Lithiation-induced embrittlement of multiwalled carbon nanotubes

Yang Liu, He Zheng, Xiao Hua Liu, Shan Huang, Ting Zhu, Jiangwei Wang, Akihiro Kushima, Nicholas S. Hudak, Xu Huang, Sulin Zhang, Scott X. Mao, Xiaofeng Qian, Ju Li, Jian Yu Huang

Research output: Contribution to journalArticlepeer-review

101 Scopus citations

Abstract

Lithiation of individual multiwalled carbon nanotubes (MWCNTs) was conducted in situ inside a transmission electron microscope. Upon lithiation, the intertube spacing increased from 3.4 to 3.6 Å, corresponding to about 5.9% radial and circumferential expansions and ∼50 GPa tensile hoop stress on the outermost tube wall. The straight tube walls became distorted after lithiation. In situ compression and tension tests show that the lithiated MWCNTs were brittle with sharp fracture edges. Such a failure mode is in stark contrast with that of the pristine MWCNTs which are extremely flexible and fail in a "sword-in-sheath" manner upon tension. The lithiation-induced embrittlement is attributed to the mechanical effect of a "point- force" action posed by the intertubular lithium that induces the stretch of carbon-carbon bonds in addition to that by applied strain, as well as the chemical effect of electron transfer from lithium to the antibonding π orbital that weakens the carbon-carbon bond. The combined mechanical and chemical weakening leads to a considerable decrease of the fracture strain in lithiated MWCNTs. Our results provide direct evidence and understanding of the degradation mechanism of carbonaceous anodes in lithium ion batteries.

Original languageEnglish (US)
Pages (from-to)7245-7253
Number of pages9
JournalACS nano
Volume5
Issue number9
DOIs
StatePublished - Sep 27 2011

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Lithiation-induced embrittlement of multiwalled carbon nanotubes'. Together they form a unique fingerprint.

Cite this