Lithospheric modification during crustal extension in the Main Ethiopian Rift

Tyrone Rooney, Tanya Furman, Ian Bastow, Dereje Ayalew, Gezahegn Yirgu

Research output: Contribution to journalArticlepeer-review

80 Scopus citations

Abstract

Quaternary lavas erupted in zones of tectonomagmatic extension within the Main Ethiopian Rift (MER) preserve details of lithospheric structure in the East African Rift System. Despite observed source heterogeneity, basalts, trachybasalts, and basaltic trachyandesites erupted in the Wonjii Fault Belt (WFB) and the Silti-Debre Zeyit Fault Zone (SDFZ) form coherent fractionation paths dominated by variable removal of observed phenocryst phases. Crustal assimilation is not widespread, though it is observed at the southern end of the WFB where both fault belts merge; farther north, assimilation of cumulate phases related to fractional crystallization of previous magmas is identified. Shallow fractionation conditions (∼1 kbar) within the WFB do not change from north to south. In contrast, lavas erupted within the contemporaneous SDFZ fractionate at various crustal depths. These results indicate a better developed magmatic system beneath the WFB where magmas rose quickly before undergoing more significant fractionation at near surface levels and a less developed system beneath the SDFZ. The distribution of magmatism and extant geophysical data indicate thinned crust and a single rift-centered zone of magmatic activity northeast of 8°30′N, consistent with a transitional lithosphere between continental and oceanic settings. Southwest of 8°30′N, thicker crust and rift-marginal axes of extension suggest lithosphere with continental affinities. The WFB is propagating southward in response to extension within the Red Sea Rift; the northward propagating SDFZ is related to rifting within the East African Rift System. This region records the unification of two rift systems, requiring care in interpreting the MER as simply transitional between continental and oceanic environments.

Original languageEnglish (US)
Article numberB10201
JournalJournal of Geophysical Research: Solid Earth
Volume112
Issue number10
DOIs
StatePublished - Oct 4 2007

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Lithospheric modification during crustal extension in the Main Ethiopian Rift'. Together they form a unique fingerprint.

Cite this