Location privacy in mobile edge clouds: A chaff-based approach

Ting He, Ertugrul Necdet Ciftcioglu, Shiqiang Wang, Kevin S. Chan

Research output: Contribution to journalArticle

16 Scopus citations

Abstract

In this paper, we consider user location privacy in mobile edge clouds (MECs). MECs are small clouds deployed at the network edge to offer cloud services close to mobile users, and many solutions have been proposed to maximize service locality by migrating services to follow their users. Co-location of a user and his service, however, implies that a cyber eavesdropper observing service migrations between MECs can localize the user up to one MEC coverage area, which can be fairly small (e.g., a femtocell). We consider using chaff services to defend against such an eavesdropper, with a focus on strategies to control the chaffs. Assuming the eavesdropper performs maximum likelihood detection, we consider both heuristic strategies that mimic the user's mobility and optimized strategies designed to minimize the detection or tracking accuracy. We show that a single chaff controlled by the optimal strategy or its online variation can drive the eavesdropper's tracking accuracy to zero when the user's mobility is sufficiently random. We further propose extended strategies that utilize randomization to defend against an advanced eavesdropper aware of the strategy. The efficacy of our solutions is verified through both synthetic and trace-driven simulations.

Original languageEnglish (US)
Article number8058447
Pages (from-to)2625-2636
Number of pages12
JournalIEEE Journal on Selected Areas in Communications
Volume35
Issue number11
DOIs
StatePublished - Nov 2017

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Cite this