Long-term continuous monitoring of the broad-line radio galaxies 3C 390.3 and 3C 120 with the Rossi X-Ray Timing Explorer

Mario Gliozzi, Rita M. Sambruna, Michael Eracleous

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

We present a study of the flux and spectral variability of the two broad-line radio galaxies (BLRGs) 3C 390.3 and 3C 120, observed almost daily with the Rossi X-Ray Timing Explorer for nearly 2 months each in 1996 and 1997, respectively. Our original motivation for this study was to search for systematic differences between BLRGs and their radio-quiet counterparts, the Seyfert galaxies, whose temporal and spectral behavior is better studied. We find that both 3C 390.3 and 3C 120 are highly variable but in different ways, and we quantify this difference by means of a structure function analysis. 3C 390.3 is significantly more variable than 3C 120, despite its jet's larger inclination angle, implying either that the X-ray variability is not dominated by the jet or that two different variability processes are simultaneously at work in 3C 390.3. We perform an energy-selected and time-resolved analysis based on the fractional variability amplitude and find that the variability amplitude of both objects is strongly anticorrelated with the energy. This last result, along with the correlated change of the photon index with the X-ray continuum flux, can be qualitatively explained within the scenario of thermal Comptonization, generally invoked for radio-quiet active galaxies. Moreover, the time-resolved and energy-selected fractional variability analysis shows a trend opposite to that observed in jet-dominated active galactic nuclei (blazars), suggesting only a minor contribution of the jet to the X-ray properties of BLRGs. Time-averaged spectral analysis indicates the presence of a strong resolved Fe Kα line with a centroid at 6.4 keV and a weak (Ω/2π ≃ 0.1-0.4) reflection component in both objects. The overall PCA+HEXTE spectra are best fitted with the constant density ionization model of Ross & Fabian, but with a modest ionization parameter. We perform a time-resolved spectral analysis of 3C 390.3 with the aim of constraining the delay between Fe Kα line and continuum variability; however, the limited signal-to-noise ratio of the line flux hampers a thorough study of the line variability.

Original languageEnglish (US)
Pages (from-to)176-189
Number of pages14
JournalAstrophysical Journal
Volume584
Issue number1 I
DOIs
StatePublished - Feb 10 2003

Fingerprint

X Ray Timing Explorer
radio galaxies
radio
monitoring
spectral analysis
ionization
K lines
energy
spectrum analysis
signal-to-noise ratio
continuums
active galaxies
blazars
x rays
Seyfert galaxies
active galactic nuclei
centroids
inclination
signal to noise ratios
analysis

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

@article{e6493d2963074786920ea617f586bb98,
title = "Long-term continuous monitoring of the broad-line radio galaxies 3C 390.3 and 3C 120 with the Rossi X-Ray Timing Explorer",
abstract = "We present a study of the flux and spectral variability of the two broad-line radio galaxies (BLRGs) 3C 390.3 and 3C 120, observed almost daily with the Rossi X-Ray Timing Explorer for nearly 2 months each in 1996 and 1997, respectively. Our original motivation for this study was to search for systematic differences between BLRGs and their radio-quiet counterparts, the Seyfert galaxies, whose temporal and spectral behavior is better studied. We find that both 3C 390.3 and 3C 120 are highly variable but in different ways, and we quantify this difference by means of a structure function analysis. 3C 390.3 is significantly more variable than 3C 120, despite its jet's larger inclination angle, implying either that the X-ray variability is not dominated by the jet or that two different variability processes are simultaneously at work in 3C 390.3. We perform an energy-selected and time-resolved analysis based on the fractional variability amplitude and find that the variability amplitude of both objects is strongly anticorrelated with the energy. This last result, along with the correlated change of the photon index with the X-ray continuum flux, can be qualitatively explained within the scenario of thermal Comptonization, generally invoked for radio-quiet active galaxies. Moreover, the time-resolved and energy-selected fractional variability analysis shows a trend opposite to that observed in jet-dominated active galactic nuclei (blazars), suggesting only a minor contribution of the jet to the X-ray properties of BLRGs. Time-averaged spectral analysis indicates the presence of a strong resolved Fe Kα line with a centroid at 6.4 keV and a weak (Ω/2π ≃ 0.1-0.4) reflection component in both objects. The overall PCA+HEXTE spectra are best fitted with the constant density ionization model of Ross & Fabian, but with a modest ionization parameter. We perform a time-resolved spectral analysis of 3C 390.3 with the aim of constraining the delay between Fe Kα line and continuum variability; however, the limited signal-to-noise ratio of the line flux hampers a thorough study of the line variability.",
author = "Mario Gliozzi and Sambruna, {Rita M.} and Michael Eracleous",
year = "2003",
month = "2",
day = "10",
doi = "10.1086/345661",
language = "English (US)",
volume = "584",
pages = "176--189",
journal = "Astrophysical Journal",
issn = "0004-637X",
publisher = "IOP Publishing Ltd.",
number = "1 I",

}

Long-term continuous monitoring of the broad-line radio galaxies 3C 390.3 and 3C 120 with the Rossi X-Ray Timing Explorer. / Gliozzi, Mario; Sambruna, Rita M.; Eracleous, Michael.

In: Astrophysical Journal, Vol. 584, No. 1 I, 10.02.2003, p. 176-189.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Long-term continuous monitoring of the broad-line radio galaxies 3C 390.3 and 3C 120 with the Rossi X-Ray Timing Explorer

AU - Gliozzi, Mario

AU - Sambruna, Rita M.

AU - Eracleous, Michael

PY - 2003/2/10

Y1 - 2003/2/10

N2 - We present a study of the flux and spectral variability of the two broad-line radio galaxies (BLRGs) 3C 390.3 and 3C 120, observed almost daily with the Rossi X-Ray Timing Explorer for nearly 2 months each in 1996 and 1997, respectively. Our original motivation for this study was to search for systematic differences between BLRGs and their radio-quiet counterparts, the Seyfert galaxies, whose temporal and spectral behavior is better studied. We find that both 3C 390.3 and 3C 120 are highly variable but in different ways, and we quantify this difference by means of a structure function analysis. 3C 390.3 is significantly more variable than 3C 120, despite its jet's larger inclination angle, implying either that the X-ray variability is not dominated by the jet or that two different variability processes are simultaneously at work in 3C 390.3. We perform an energy-selected and time-resolved analysis based on the fractional variability amplitude and find that the variability amplitude of both objects is strongly anticorrelated with the energy. This last result, along with the correlated change of the photon index with the X-ray continuum flux, can be qualitatively explained within the scenario of thermal Comptonization, generally invoked for radio-quiet active galaxies. Moreover, the time-resolved and energy-selected fractional variability analysis shows a trend opposite to that observed in jet-dominated active galactic nuclei (blazars), suggesting only a minor contribution of the jet to the X-ray properties of BLRGs. Time-averaged spectral analysis indicates the presence of a strong resolved Fe Kα line with a centroid at 6.4 keV and a weak (Ω/2π ≃ 0.1-0.4) reflection component in both objects. The overall PCA+HEXTE spectra are best fitted with the constant density ionization model of Ross & Fabian, but with a modest ionization parameter. We perform a time-resolved spectral analysis of 3C 390.3 with the aim of constraining the delay between Fe Kα line and continuum variability; however, the limited signal-to-noise ratio of the line flux hampers a thorough study of the line variability.

AB - We present a study of the flux and spectral variability of the two broad-line radio galaxies (BLRGs) 3C 390.3 and 3C 120, observed almost daily with the Rossi X-Ray Timing Explorer for nearly 2 months each in 1996 and 1997, respectively. Our original motivation for this study was to search for systematic differences between BLRGs and their radio-quiet counterparts, the Seyfert galaxies, whose temporal and spectral behavior is better studied. We find that both 3C 390.3 and 3C 120 are highly variable but in different ways, and we quantify this difference by means of a structure function analysis. 3C 390.3 is significantly more variable than 3C 120, despite its jet's larger inclination angle, implying either that the X-ray variability is not dominated by the jet or that two different variability processes are simultaneously at work in 3C 390.3. We perform an energy-selected and time-resolved analysis based on the fractional variability amplitude and find that the variability amplitude of both objects is strongly anticorrelated with the energy. This last result, along with the correlated change of the photon index with the X-ray continuum flux, can be qualitatively explained within the scenario of thermal Comptonization, generally invoked for radio-quiet active galaxies. Moreover, the time-resolved and energy-selected fractional variability analysis shows a trend opposite to that observed in jet-dominated active galactic nuclei (blazars), suggesting only a minor contribution of the jet to the X-ray properties of BLRGs. Time-averaged spectral analysis indicates the presence of a strong resolved Fe Kα line with a centroid at 6.4 keV and a weak (Ω/2π ≃ 0.1-0.4) reflection component in both objects. The overall PCA+HEXTE spectra are best fitted with the constant density ionization model of Ross & Fabian, but with a modest ionization parameter. We perform a time-resolved spectral analysis of 3C 390.3 with the aim of constraining the delay between Fe Kα line and continuum variability; however, the limited signal-to-noise ratio of the line flux hampers a thorough study of the line variability.

UR - http://www.scopus.com/inward/record.url?scp=0043234788&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0043234788&partnerID=8YFLogxK

U2 - 10.1086/345661

DO - 10.1086/345661

M3 - Article

AN - SCOPUS:0043234788

VL - 584

SP - 176

EP - 189

JO - Astrophysical Journal

JF - Astrophysical Journal

SN - 0004-637X

IS - 1 I

ER -