TY - JOUR
T1 - Low-level ZDR signatures in supercell forward flanks
T2 - The role of size sorting and melting of hail
AU - Dawson, Daniel T.
AU - Mansell, Edward R.
AU - Jung, Youngsun
AU - Wicker, Louis J.
AU - Kumjian, Matthew R.
AU - Xue, Ming
PY - 2014/1
Y1 - 2014/1
N2 - The low levels of supercell forward flanks commonly exhibit distinct differential reflectivity (ZDR) signatures, including the low-ZDR hail signature and the high-ZDR "arc."The ZDR arc has been previously associated with size sorting of raindrops in the presence of vertical wind shear; here this model is extended to include size sorting of hail. Idealized simulations of a supercell storm observed by the Norman, Oklahoma (KOUN), polarimetric radar on 1 June 2008 are performed using a multimoment bulk microphysics scheme, in which size sorting is allowed or disallowed for hydrometeor species. Several velocity-diameter relationships for the hail fall speed are considered, as well as fixed or variable bulk densities that span the graupel-tohail spectrum. A T-matrix-based emulator is used to derive polarimetric fields from the hydrometeor state variables. Size sorting of hail is found to have a dominant impact on ZDR and can result in a ZDR arc from melting hail even when size sorting is disallowed in the rain field. The low-ZDR hail core only appears when size sorting is allowed for hail. The mean storm-relative wind in a deep layer is found to align closely with the gradient in mean mass diameter of both rain and hail, with a slight shift toward the storm-relative mean wind below the melting level in the case of rain. The best comparison with the observed 1 June 2008 supercell is obtained when both rain and hail are allowed to sort, and the bulk density and associated fall-speed curve for hail are predicted by the model microphysics.
AB - The low levels of supercell forward flanks commonly exhibit distinct differential reflectivity (ZDR) signatures, including the low-ZDR hail signature and the high-ZDR "arc."The ZDR arc has been previously associated with size sorting of raindrops in the presence of vertical wind shear; here this model is extended to include size sorting of hail. Idealized simulations of a supercell storm observed by the Norman, Oklahoma (KOUN), polarimetric radar on 1 June 2008 are performed using a multimoment bulk microphysics scheme, in which size sorting is allowed or disallowed for hydrometeor species. Several velocity-diameter relationships for the hail fall speed are considered, as well as fixed or variable bulk densities that span the graupel-tohail spectrum. A T-matrix-based emulator is used to derive polarimetric fields from the hydrometeor state variables. Size sorting of hail is found to have a dominant impact on ZDR and can result in a ZDR arc from melting hail even when size sorting is disallowed in the rain field. The low-ZDR hail core only appears when size sorting is allowed for hail. The mean storm-relative wind in a deep layer is found to align closely with the gradient in mean mass diameter of both rain and hail, with a slight shift toward the storm-relative mean wind below the melting level in the case of rain. The best comparison with the observed 1 June 2008 supercell is obtained when both rain and hail are allowed to sort, and the bulk density and associated fall-speed curve for hail are predicted by the model microphysics.
UR - http://www.scopus.com/inward/record.url?scp=84888884537&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84888884537&partnerID=8YFLogxK
U2 - 10.1175/JAS-D-13-0118.1
DO - 10.1175/JAS-D-13-0118.1
M3 - Article
AN - SCOPUS:84888884537
SN - 0022-4928
VL - 71
SP - 276
EP - 299
JO - Journals of the Atmospheric Sciences
JF - Journals of the Atmospheric Sciences
IS - 1
ER -