Low-temperature hydrothermal synthesis of yttrium-doped zirconia powders

Takayuki Tsukada, Sridhar Venigalla, Augusto A. Morrone, James H. Adair

Research output: Contribution to journalArticlepeer-review

86 Scopus citations

Abstract

The feasibility of low-temperature synthesis of yttrium-doped zirconia (Y-ZrO2) crystalline powders in aqueous solutions at ≤100°C has been evaluated, and the hydrothermal crystallization mechanism for Y-ZrO2 powders also has been investigated. Coprecipitated (Y,Zr) hydroxide gel, mechanical mixtures of Y(OH)3 and Zr(OH)4 gel, and Y(OH)3 gel have been reacted in boiling alkaline solutions. Coprecipitated (Y,Zr) hydroxide gel crystallized to cubic or tetragonal Y-ZrO2 at pH 13.9. The yttrium content in the powder synthesized from coprecipitated (Y,Zr) hydroxide is consistent with the initial precursor solution composition, as expected from the similarity in solubility of Zr(OH)-5 and Y(OH)-4. A diffusionless mechanism for the transformation of the (Y,Zr) hydroxide gel to Y-ZrO2 is proposed, and the phase stability in aqueous solution is discussed in terms of an in situ crystallization model. It is also demonstrated through thermodynamic arguments with experimental verification that the stable form of the Y-ZrO2 at 25°C is the anhydrous phase, not the metal hydroxide as previously thought.

Original languageEnglish (US)
Pages (from-to)1169-1174
Number of pages6
JournalJournal of the American Ceramic Society
Volume82
Issue number5
DOIs
StatePublished - 1999

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Low-temperature hydrothermal synthesis of yttrium-doped zirconia powders'. Together they form a unique fingerprint.

Cite this