Low-temperature solution synthesis of nanocrystalline binary intermetallic compounds using the polyol process

Robert E. Cable, Raymond Edward Schaak

Research output: Contribution to journalArticlepeer-review

131 Scopus citations


Nanocrystalline intermetallic powders have been synthesized from metal salt precursors at low temperatures using a modified polyol process with tetraethylene glycol as the solvent. This solution route has yielded several phase-pure compounds in the M-Sn (M = Ag, Au, Co, Cu, Fe, Ni), Pt-M′ (M′ = Bi, Pb, Sb, Sn), and Co-Sb bimetallic systems. In the Co-Sb system, CoSb and CoSb 3 can be selectively produced by controlling the initial metal concentrations and the reaction temperature. The Co-Sn and Cu-Sn systems can selectively form Co 3Sn 2 vs CoSn and Cu 6Sn 5 vs Cu 41Sn 11 during a single reaction as a function of temperature. These results demonstrate kinetic control over crystal structure in these intermetallic systems. The reaction progress may be monitored at different times and temperatures by XRD, giving insight into the reaction pathways. TEM micrographs show that the particle sizes in the M-Sn systems range from 5 to 50 nm, while the Pt-M′ systems range from 10 to 100 nm. SEM micrographs show that these particles aggregate to form densely packed 100-200 nm clusters. DSC data show that the intermetallics synthesized using the polyol process exhibit order-disorder phase transitions at temperatures near those expected for bulk powders. The nanocrystalline powders are redispersible in solution, and preliminary experiments have shown that they may be templated by nanoscale molds, allowing for solution-based materials processing applications.

Original languageEnglish (US)
Pages (from-to)6835-6841
Number of pages7
JournalChemistry of Materials
Issue number26
StatePublished - Dec 27 2005

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)
  • Materials Chemistry


Dive into the research topics of 'Low-temperature solution synthesis of nanocrystalline binary intermetallic compounds using the polyol process'. Together they form a unique fingerprint.

Cite this