TY - GEN
T1 - Lower bounds for local monotonicity reconstruction from transitive-closure spanners
AU - Bhattacharyya, Arnab
AU - Grigorescu, Elena
AU - Jha, Madhav
AU - Jung, Kyomin
AU - Raskhodnikova, Sofya
AU - Woodruff, David P.
PY - 2010
Y1 - 2010
N2 - Given a directed graph G=(V,E) and an integer k≥1, a k-transitive-closure-spanner ( k-TC-spanner) of G is a directed graph H=(V, EH ) that has (1) the same transitive-closure as G and (2) diameter at most k. Transitive-closure spanners are a common abstraction for applications in access control, property testing and data structures. We show a connection between 2-TC-spanners and local monotonicity reconstructors. A local monotonicity reconstructor, introduced by Saks and Seshadhri (SIAM Journal on Computing, 2010), is a randomized algorithm that, given access to an oracle for an almost monotone function f : [m]d → ℝ, can quickly evaluate a related function g : [m]d → ℝ which is guaranteed to be monotone. Furthermore, the reconstructor can be implemented in a distributed manner. We show that an efficient local monotonicity reconstructor implies a sparse 2-TC-spanner of the directed hypergrid (hypercube), providing a new technique for proving lower bounds for local monotonicity reconstructors. Our connection is, in fact, more general: an efficient local monotonicity reconstructor for functions on any partially ordered set (poset) implies a sparse 2-TC-spanner of the directed acyclic graph corresponding to the poset. We present tight upper and lower bounds on the size of the sparsest 2-TC-spanners of the directed hypercube and hypergrid. These bounds imply tighter lower bounds for local monotonicity reconstructors that nearly match the known upper bounds.
AB - Given a directed graph G=(V,E) and an integer k≥1, a k-transitive-closure-spanner ( k-TC-spanner) of G is a directed graph H=(V, EH ) that has (1) the same transitive-closure as G and (2) diameter at most k. Transitive-closure spanners are a common abstraction for applications in access control, property testing and data structures. We show a connection between 2-TC-spanners and local monotonicity reconstructors. A local monotonicity reconstructor, introduced by Saks and Seshadhri (SIAM Journal on Computing, 2010), is a randomized algorithm that, given access to an oracle for an almost monotone function f : [m]d → ℝ, can quickly evaluate a related function g : [m]d → ℝ which is guaranteed to be monotone. Furthermore, the reconstructor can be implemented in a distributed manner. We show that an efficient local monotonicity reconstructor implies a sparse 2-TC-spanner of the directed hypergrid (hypercube), providing a new technique for proving lower bounds for local monotonicity reconstructors. Our connection is, in fact, more general: an efficient local monotonicity reconstructor for functions on any partially ordered set (poset) implies a sparse 2-TC-spanner of the directed acyclic graph corresponding to the poset. We present tight upper and lower bounds on the size of the sparsest 2-TC-spanners of the directed hypercube and hypergrid. These bounds imply tighter lower bounds for local monotonicity reconstructors that nearly match the known upper bounds.
UR - http://www.scopus.com/inward/record.url?scp=78149304714&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78149304714&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-15369-3_34
DO - 10.1007/978-3-642-15369-3_34
M3 - Conference contribution
AN - SCOPUS:78149304714
SN - 3642153682
SN - 9783642153686
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 448
EP - 461
BT - Approximation, Randomization, and Combinatorial Optimization
T2 - 13th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2010 and 14th International Workshop on Randomization and Computation, RANDOM 2010
Y2 - 1 September 2010 through 3 September 2010
ER -