Machine learning for the New York City power grid

Cynthia Rudin, David Waltz, Roger Anderson, Albert Boulanger, Ansaf Salleb-Aouissi, Maggie Chow, Haimonti Dutta, Philip Gross, Bert Huang, Steve Ierome, Delfina F. Isaac, Arthur Kressner, Rebecca J. Passonneau, Axinia Radeva, Leon Wu

Research output: Contribution to journalArticle

123 Scopus citations

Abstract

Power companies can benefit from the use of knowledge discovery methods and statistical machine learning for preventive maintenance. We introduce a general process for transforming historical electrical grid data into models that aim to predict the risk of failures for components and systems. These models can be used directly by power companies to assist with prioritization of maintenance and repair work. Specialized versions of this process are used to produce 1) feeder failure rankings, 2) cable, joint, terminator, and transformer rankings, 3) feeder Mean Time Between Failure (MTBF) estimates, and 4) manhole events vulnerability rankings. The process in its most general form can handle diverse, noisy, sources that are historical (static), semi-real-time, or real-time, incorporates state-of-the-art machine learning algorithms for prioritization (supervised ranking or MTBF), and includes an evaluation of results via cross-validation and blind test. Above and beyond the ranked lists and MTBF estimates are business management interfaces that allow the prediction capability to be integrated directly into corporate planning and decision support; such interfaces rely on several important properties of our general modeling approach: that machine learning features are meaningful to domain experts, that the processing of data is transparent, and that prediction results are accurate enough to support sound decision making. We discuss the challenges in working with historical electrical grid data that were not designed for predictive purposes. The rawness of these data contrasts with the accuracy of the statistical models that can be obtained from the process; these models are sufficiently accurate to assist in maintaining New York City's electrical grid.

Original languageEnglish (US)
Article number5770269
Pages (from-to)328-345
Number of pages18
JournalIEEE Transactions on Pattern Analysis and Machine Intelligence
Volume34
Issue number2
DOIs
StatePublished - Jan 1 2012

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition
  • Computational Theory and Mathematics
  • Artificial Intelligence
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Machine learning for the New York City power grid'. Together they form a unique fingerprint.

  • Cite this

    Rudin, C., Waltz, D., Anderson, R., Boulanger, A., Salleb-Aouissi, A., Chow, M., Dutta, H., Gross, P., Huang, B., Ierome, S., Isaac, D. F., Kressner, A., Passonneau, R. J., Radeva, A., & Wu, L. (2012). Machine learning for the New York City power grid. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(2), 328-345. [5770269]. https://doi.org/10.1109/TPAMI.2011.108