TY - JOUR
T1 - Magnetic Resonance Imaging-Derived Microvascular Perfusion Modeling to Assess Peripheral Artery Disease
AU - Gimnich, Olga A.
AU - Belousova, Tatiana
AU - Short, Christina M.
AU - Taylor, Addison A.
AU - Nambi, Vijay
AU - Morrisett, Joel D.
AU - Ballantyne, Christie M.
AU - Bismuth, Jean
AU - Shah, Dipan J.
AU - Brunner, Gerd
N1 - Funding Information:
This work was supported by funding from the National Institutes of Health (R01HL137763 and K25HL121149 both to GB) and the American Heart Association (13BGIA16720014 to GB).
Publisher Copyright:
© 2023 The Authors.
PY - 2023/2/7
Y1 - 2023/2/7
N2 - BACKGROUND: Computational fluid dynamics has shown good agreement with contrast-enhanced magnetic resonance imaging measurements in cardiovascular disease applications. We have developed a biomechanical model of microvascular perfusion using contrast-enhanced magnetic resonance imaging signal intensities derived from skeletal calf muscles to study peripheral artery disease (PAD). METHODS AND RESULTS: The computational microvascular model was used to study skeletal calf muscle perfusion in 56 in-dividuals (36 patients with PAD, 20 matched controls). The recruited participants underwent contrast-enhanced magnetic resonance imaging and ankle-brachial index testing at rest and after 6-minute treadmill walking. We have determined associations of microvascular model parameters including the transfer rate constant, a measure of vascular leakiness; the interstitial permeability to fluid flow which reflects the permeability of the microvasculature; porosity, a measure of the fraction of the extracellular space; the outflow filtration coefficient; and the microvascular pressure with known markers of patients with PAD. Transfer rate constant, interstitial permeability to fluid flow, and microvascular pressure were higher, whereas porosity and outflow filtration coefficient were lower in patients with PAD than those in matched controls (all P values ≤0.014). In pooled analyses of all participants, the model parameters (transfer rate constant, interstitial permeability to fluid flow, porosity, outflow filtration coefficient, microvascular pressure) were significantly associated with the resting and exercise ankle-brachial indexes, claudication onset time, and peak walking time (all P values ≤0.013). Among patients with PAD, interstitial permeability to fluid flow, and microvascular pressure were higher, while porosity and outflow filtration coefficient were lower in treadmill noncom-pleters compared with treadmill completers (all P values ≤0.001). CONCLUSIONS: Computational microvascular model parameters differed significantly between patients with PAD and matched controls. Thus, computational microvascular modeling could be of interest in studying lower extremity ischemia.
AB - BACKGROUND: Computational fluid dynamics has shown good agreement with contrast-enhanced magnetic resonance imaging measurements in cardiovascular disease applications. We have developed a biomechanical model of microvascular perfusion using contrast-enhanced magnetic resonance imaging signal intensities derived from skeletal calf muscles to study peripheral artery disease (PAD). METHODS AND RESULTS: The computational microvascular model was used to study skeletal calf muscle perfusion in 56 in-dividuals (36 patients with PAD, 20 matched controls). The recruited participants underwent contrast-enhanced magnetic resonance imaging and ankle-brachial index testing at rest and after 6-minute treadmill walking. We have determined associations of microvascular model parameters including the transfer rate constant, a measure of vascular leakiness; the interstitial permeability to fluid flow which reflects the permeability of the microvasculature; porosity, a measure of the fraction of the extracellular space; the outflow filtration coefficient; and the microvascular pressure with known markers of patients with PAD. Transfer rate constant, interstitial permeability to fluid flow, and microvascular pressure were higher, whereas porosity and outflow filtration coefficient were lower in patients with PAD than those in matched controls (all P values ≤0.014). In pooled analyses of all participants, the model parameters (transfer rate constant, interstitial permeability to fluid flow, porosity, outflow filtration coefficient, microvascular pressure) were significantly associated with the resting and exercise ankle-brachial indexes, claudication onset time, and peak walking time (all P values ≤0.013). Among patients with PAD, interstitial permeability to fluid flow, and microvascular pressure were higher, while porosity and outflow filtration coefficient were lower in treadmill noncom-pleters compared with treadmill completers (all P values ≤0.001). CONCLUSIONS: Computational microvascular model parameters differed significantly between patients with PAD and matched controls. Thus, computational microvascular modeling could be of interest in studying lower extremity ischemia.
UR - http://www.scopus.com/inward/record.url?scp=85147536611&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85147536611&partnerID=8YFLogxK
U2 - 10.1161/JAHA.122.027649
DO - 10.1161/JAHA.122.027649
M3 - Article
C2 - 36688362
AN - SCOPUS:85147536611
SN - 2047-9980
VL - 12
JO - Journal of the American Heart Association
JF - Journal of the American Heart Association
IS - 3
M1 - e027649
ER -