Managing supply chain execution: Monitoring timeliness and correctness via individualized trace data

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Improvements in information technologies provide new opportunities to control and improve business processes based on real-time performance data. A class of data we call individualized trace data (ITD) identifies the real-time status of individual entities as they move through execution processes, such as an individual product passing through a supply chain or a uniquely identified mortgage application going through an approval process. We develop a mathematical framework which we call the State-Identity-Time (SIT) Framework to represent and manipulate ITD at multiple levels of aggregation for different managerial purposes. Using this framework, we design a pair of generic quality measuresâtimeliness and correctnessâfor the progress of entities through a supply chain. The timeliness and correctness metrics provide behavioral visibility that can help managers to grasp the dynamics of supply chain behavior that is distinct from asset visibility such as inventory. We develop special quality control methods using this framework to address the issue of overreaction that is common among managers faced with a large volume of fast-changing data. The SIT structure and its associated methods inform managers on if, when, and where to react. We illustrate our approach using simulations based on real RFID data from a Walmart RFID pilot project.

Original languageEnglish (US)
Pages (from-to)715-729
Number of pages15
JournalProduction and Operations Management
Volume21
Issue number4
DOIs
StatePublished - Jul 1 2012

All Science Journal Classification (ASJC) codes

  • Management Science and Operations Research
  • Industrial and Manufacturing Engineering
  • Management of Technology and Innovation

Fingerprint Dive into the research topics of 'Managing supply chain execution: Monitoring timeliness and correctness via individualized trace data'. Together they form a unique fingerprint.

Cite this