## Abstract

In his study of Dirac structures, a notion which includes both Poisson structures and closed 2-forms, T. Courant introduced a bracket on the direct sum of vector fields and 1-forms. This bracket does not satisfy the Jacobi identity except on certain subspaces. In this paper we systematize the properties of this bracket in the definition of a Courant algebroid. This structure on a vector bundle E → M, consists of an antisymmetric bracket on the sections of E whose “Jacobi anomaly“ has an explicit expression in terms of a bundle map E → TM and a field of symmetric bilinear forms on E. When M is a point, the definition reduces to that of a Lie algebra carrying an invariant nondegenerate symmetric bilinear form. For any Lie bialgebroid (A, A*) over M (a notion defined by Mackenzie and Xu), there is a natural Courant algebroid structure on A ⨁ A* which is the Drinfel’d double of a Lie bialgebra when M is a point. Conversely, if A and A* are complementary isotropic subbundles of a Courant algebroid E, closed under the bracket (such a bundle, with dimension half that of E, is called a Dirac structure), there is a natural Lie bialgebroid structure on (A, A*) whose double is isomorphic to E. The theory of Manin triples is thereby extended from Lie algebras to Lie algebroids. Our work gives a new approach to bihamiltonian structures and a new way of combining two Poisson structures to obtain a third one. We also take some tentative steps toward generalizing Drinfel'd's theory of Poisson homogeneous spaces from groups to groupoids.

Original language | English (US) |
---|---|

Pages (from-to) | 547-574 |

Number of pages | 28 |

Journal | Journal of Differential Geometry |

Volume | 45 |

Issue number | 3 |

DOIs | |

State | Published - 1997 |

## All Science Journal Classification (ASJC) codes

- Analysis
- Algebra and Number Theory
- Geometry and Topology