TY - JOUR
T1 - Manual rat sleep classification in principal component space
AU - Gilmour, Timothy P.
AU - Fang, Jidong
AU - Guan, Zhiwei
AU - Subramanian, Thyagarajan
PY - 2010/1/18
Y1 - 2010/1/18
N2 - A simple method is described for using principal component analysis (PCA) to score rat sleep recordings as awake, rapid-eye-movement (REM) sleep, or non-REM (NREM) sleep. PCA was used to reduce the dimensionality of the features extracted from each epoch to three, and the projections were then graphed in a scatterplot where the clusters were visually apparent. The clusters were then directly manually selected, classifying the entire recording at once. The method was tested in a set of ten 24-h rat sleep electroencephalogram (EEG) and electromyogram (EMG) recordings. Classifications by two human raters performing traditional epoch-by-epoch scoring were blindly compared with classifications by another two human raters using the new PCA method. Overall inter-rater median percent agreements ranged between 93.7% and 94.9%. Median Cohen's kappa coefficient ranged from 0.890 to 0.909. The PCA method on average required about 5 min for classification of each 24-h recording. The combination of good accuracy and reduced time compared to traditional sleep scoring suggests that the method may be useful for sleep research.
AB - A simple method is described for using principal component analysis (PCA) to score rat sleep recordings as awake, rapid-eye-movement (REM) sleep, or non-REM (NREM) sleep. PCA was used to reduce the dimensionality of the features extracted from each epoch to three, and the projections were then graphed in a scatterplot where the clusters were visually apparent. The clusters were then directly manually selected, classifying the entire recording at once. The method was tested in a set of ten 24-h rat sleep electroencephalogram (EEG) and electromyogram (EMG) recordings. Classifications by two human raters performing traditional epoch-by-epoch scoring were blindly compared with classifications by another two human raters using the new PCA method. Overall inter-rater median percent agreements ranged between 93.7% and 94.9%. Median Cohen's kappa coefficient ranged from 0.890 to 0.909. The PCA method on average required about 5 min for classification of each 24-h recording. The combination of good accuracy and reduced time compared to traditional sleep scoring suggests that the method may be useful for sleep research.
UR - http://www.scopus.com/inward/record.url?scp=72649090779&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=72649090779&partnerID=8YFLogxK
U2 - 10.1016/j.neulet.2009.11.052
DO - 10.1016/j.neulet.2009.11.052
M3 - Article
C2 - 19944737
AN - SCOPUS:72649090779
VL - 469
SP - 97
EP - 101
JO - Neuroscience Letters
JF - Neuroscience Letters
SN - 0304-3940
IS - 1
ER -