Marker-Assisted Selection in Tomato Breeding

Majid R. Foolad, Dilip R. Panthee

Research output: Contribution to journalReview article

68 Citations (Scopus)

Abstract

The cultivated tomato, Solanum lycopersicum L., is the second most consumed vegetable crop after potato and unquestionably the most popular garden crop in the world. There are more varieties of tomato sold worldwide than any other vegetable crop. Most of the commercial cultivars of tomato have been developed through phenotypic selection and traditional breeding. However, with the advent of molecular markers and marker-assisted selection (MAS) technology, tomato genetics and breeding research has entered into a new and exciting era. Molecular markers have been used extensively for genetic mapping as well as identification and characterization of genes and QTLs for many agriculturally important traits in tomato, including disease and insect resistance, abiotic stress tolerance, and flower- and fruit-related characteristics. The technology also has been utilized for marker-assisted breeding for several economically important traits, in particular disease resistance. However, the extent to which MAS has been employed in public and private tomato breeding programs has not been clearly determined. The objectives of this study were to review the publically-available molecular markers for major disease resistance traits in tomato and assess their current and potential use in public and private tomato breeding programs. A review of the literature indicated that although markers have been identified for most disease resistance traits in tomato, not all of them have been verified or are readily applicable in breeding programs. For example, many markers are not validated across tomato genotypes or are not polymorphic within tomato breeding populations, thus greatly reducing their utility in crop improvement programs. However, there seems to be a considerable use of markers, particularly in the private sector, for various purposes, including testing hybrid purity, screening breeding populations for disease resistance, and marker assisted backcross breeding. Here we provide a summary of molecular markers available for major disease resistance traits in tomato and discuss their actual use in tomato breeding programs. It appears that many of the available markers may need to be further refined or examined for trait association and presence of polymorphism in breeding populations. However, with the recent advances in tomato genome and transcriptome sequencing, it is becoming increasingly possible to develop new and more informative PCR-based markers, including single nucleotide polymorphisms (SNPs), to further facilitate the use of markers in tomato breeding. It is also expected that more markers will become available via the emerging technology of genotyping by sequencing (GBS).

Original languageEnglish (US)
Pages (from-to)93-123
Number of pages31
JournalCritical Reviews in Plant Sciences
Volume31
Issue number2
DOIs
StatePublished - Jan 1 2012

Fingerprint

marker-assisted selection
tomatoes
breeding
disease resistance
genetic markers
vegetable crops
private sector
backcrossing
Solanum lycopersicum
crops
transcriptomics
purity
stress tolerance
genotyping
single nucleotide polymorphism
abiotic stress
chromosome mapping
quantitative trait loci

All Science Journal Classification (ASJC) codes

  • Plant Science

Cite this

Foolad, Majid R. ; Panthee, Dilip R. / Marker-Assisted Selection in Tomato Breeding. In: Critical Reviews in Plant Sciences. 2012 ; Vol. 31, No. 2. pp. 93-123.
@article{b5100a4363e3488abe7594de3a019544,
title = "Marker-Assisted Selection in Tomato Breeding",
abstract = "The cultivated tomato, Solanum lycopersicum L., is the second most consumed vegetable crop after potato and unquestionably the most popular garden crop in the world. There are more varieties of tomato sold worldwide than any other vegetable crop. Most of the commercial cultivars of tomato have been developed through phenotypic selection and traditional breeding. However, with the advent of molecular markers and marker-assisted selection (MAS) technology, tomato genetics and breeding research has entered into a new and exciting era. Molecular markers have been used extensively for genetic mapping as well as identification and characterization of genes and QTLs for many agriculturally important traits in tomato, including disease and insect resistance, abiotic stress tolerance, and flower- and fruit-related characteristics. The technology also has been utilized for marker-assisted breeding for several economically important traits, in particular disease resistance. However, the extent to which MAS has been employed in public and private tomato breeding programs has not been clearly determined. The objectives of this study were to review the publically-available molecular markers for major disease resistance traits in tomato and assess their current and potential use in public and private tomato breeding programs. A review of the literature indicated that although markers have been identified for most disease resistance traits in tomato, not all of them have been verified or are readily applicable in breeding programs. For example, many markers are not validated across tomato genotypes or are not polymorphic within tomato breeding populations, thus greatly reducing their utility in crop improvement programs. However, there seems to be a considerable use of markers, particularly in the private sector, for various purposes, including testing hybrid purity, screening breeding populations for disease resistance, and marker assisted backcross breeding. Here we provide a summary of molecular markers available for major disease resistance traits in tomato and discuss their actual use in tomato breeding programs. It appears that many of the available markers may need to be further refined or examined for trait association and presence of polymorphism in breeding populations. However, with the recent advances in tomato genome and transcriptome sequencing, it is becoming increasingly possible to develop new and more informative PCR-based markers, including single nucleotide polymorphisms (SNPs), to further facilitate the use of markers in tomato breeding. It is also expected that more markers will become available via the emerging technology of genotyping by sequencing (GBS).",
author = "Foolad, {Majid R.} and Panthee, {Dilip R.}",
year = "2012",
month = "1",
day = "1",
doi = "10.1080/07352689.2011.616057",
language = "English (US)",
volume = "31",
pages = "93--123",
journal = "Critical Reviews in Plant Sciences",
issn = "0735-2689",
publisher = "Taylor and Francis Ltd.",
number = "2",

}

Marker-Assisted Selection in Tomato Breeding. / Foolad, Majid R.; Panthee, Dilip R.

In: Critical Reviews in Plant Sciences, Vol. 31, No. 2, 01.01.2012, p. 93-123.

Research output: Contribution to journalReview article

TY - JOUR

T1 - Marker-Assisted Selection in Tomato Breeding

AU - Foolad, Majid R.

AU - Panthee, Dilip R.

PY - 2012/1/1

Y1 - 2012/1/1

N2 - The cultivated tomato, Solanum lycopersicum L., is the second most consumed vegetable crop after potato and unquestionably the most popular garden crop in the world. There are more varieties of tomato sold worldwide than any other vegetable crop. Most of the commercial cultivars of tomato have been developed through phenotypic selection and traditional breeding. However, with the advent of molecular markers and marker-assisted selection (MAS) technology, tomato genetics and breeding research has entered into a new and exciting era. Molecular markers have been used extensively for genetic mapping as well as identification and characterization of genes and QTLs for many agriculturally important traits in tomato, including disease and insect resistance, abiotic stress tolerance, and flower- and fruit-related characteristics. The technology also has been utilized for marker-assisted breeding for several economically important traits, in particular disease resistance. However, the extent to which MAS has been employed in public and private tomato breeding programs has not been clearly determined. The objectives of this study were to review the publically-available molecular markers for major disease resistance traits in tomato and assess their current and potential use in public and private tomato breeding programs. A review of the literature indicated that although markers have been identified for most disease resistance traits in tomato, not all of them have been verified or are readily applicable in breeding programs. For example, many markers are not validated across tomato genotypes or are not polymorphic within tomato breeding populations, thus greatly reducing their utility in crop improvement programs. However, there seems to be a considerable use of markers, particularly in the private sector, for various purposes, including testing hybrid purity, screening breeding populations for disease resistance, and marker assisted backcross breeding. Here we provide a summary of molecular markers available for major disease resistance traits in tomato and discuss their actual use in tomato breeding programs. It appears that many of the available markers may need to be further refined or examined for trait association and presence of polymorphism in breeding populations. However, with the recent advances in tomato genome and transcriptome sequencing, it is becoming increasingly possible to develop new and more informative PCR-based markers, including single nucleotide polymorphisms (SNPs), to further facilitate the use of markers in tomato breeding. It is also expected that more markers will become available via the emerging technology of genotyping by sequencing (GBS).

AB - The cultivated tomato, Solanum lycopersicum L., is the second most consumed vegetable crop after potato and unquestionably the most popular garden crop in the world. There are more varieties of tomato sold worldwide than any other vegetable crop. Most of the commercial cultivars of tomato have been developed through phenotypic selection and traditional breeding. However, with the advent of molecular markers and marker-assisted selection (MAS) technology, tomato genetics and breeding research has entered into a new and exciting era. Molecular markers have been used extensively for genetic mapping as well as identification and characterization of genes and QTLs for many agriculturally important traits in tomato, including disease and insect resistance, abiotic stress tolerance, and flower- and fruit-related characteristics. The technology also has been utilized for marker-assisted breeding for several economically important traits, in particular disease resistance. However, the extent to which MAS has been employed in public and private tomato breeding programs has not been clearly determined. The objectives of this study were to review the publically-available molecular markers for major disease resistance traits in tomato and assess their current and potential use in public and private tomato breeding programs. A review of the literature indicated that although markers have been identified for most disease resistance traits in tomato, not all of them have been verified or are readily applicable in breeding programs. For example, many markers are not validated across tomato genotypes or are not polymorphic within tomato breeding populations, thus greatly reducing their utility in crop improvement programs. However, there seems to be a considerable use of markers, particularly in the private sector, for various purposes, including testing hybrid purity, screening breeding populations for disease resistance, and marker assisted backcross breeding. Here we provide a summary of molecular markers available for major disease resistance traits in tomato and discuss their actual use in tomato breeding programs. It appears that many of the available markers may need to be further refined or examined for trait association and presence of polymorphism in breeding populations. However, with the recent advances in tomato genome and transcriptome sequencing, it is becoming increasingly possible to develop new and more informative PCR-based markers, including single nucleotide polymorphisms (SNPs), to further facilitate the use of markers in tomato breeding. It is also expected that more markers will become available via the emerging technology of genotyping by sequencing (GBS).

UR - http://www.scopus.com/inward/record.url?scp=84859299619&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84859299619&partnerID=8YFLogxK

U2 - 10.1080/07352689.2011.616057

DO - 10.1080/07352689.2011.616057

M3 - Review article

AN - SCOPUS:84859299619

VL - 31

SP - 93

EP - 123

JO - Critical Reviews in Plant Sciences

JF - Critical Reviews in Plant Sciences

SN - 0735-2689

IS - 2

ER -