Mass-independent fractionation of sulfur isotopes in archean sediments: Strong evidence for an anoxic archean atmosphere

A. A. Pavlov, J. F. Kasting

Research output: Contribution to journalArticlepeer-review

611 Scopus citations

Abstract

Mass-independent fractionation (MIF) of sulfur isotopes has been reported in sediments of Archean and Early Proterozoic Age (>2.3 Ga) but not in younger rocks. The only fractionation mechanism that is consistent with the data on all four sulfur isotopes involves atmospheric photochemical reactions such as SO 2 photolysis. We have used a one-dimensional photochemical model to investigate how the isotopic fractionation produced during SO 2 photolysis would have been transferred to other gaseous and particulate sulfur-bearing species in both low-O 2 and high-O 2 atmospheres. We show that in atmospheres with O 2 concentrations <10 -5 times the present atmospheric level (PAL), sulfur would have been removed from the atmosphere in a variety of different oxidation states, each of which would have had its own distinct isotopic signature. By contrast, in atmospheres with O 2 concentrations ≥10 -5 PAL, all sulfur-bearing species would have passed through the oceanic sulfate reservoir before being incorporated into sediments, so any signature of MIF would have been lost. We conclude that the atmospheric O 2 concentration must have been <10 -5 PAL prior to 2.3 Ga.

Original languageEnglish (US)
Pages (from-to)27-41
Number of pages15
JournalAstrobiology
Volume2
Issue number1
DOIs
StatePublished - Mar 1 2002

All Science Journal Classification (ASJC) codes

  • Agricultural and Biological Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Mass-independent fractionation of sulfur isotopes in archean sediments: Strong evidence for an anoxic archean atmosphere'. Together they form a unique fingerprint.

Cite this