TY - JOUR
T1 - Mathematical modeling of lactic acid fermentation in bioreactor with carob extract
AU - Germec, Mustafa
AU - Karhan, Mustafa
AU - Bialka, Katherine L.
AU - Demirci, Ali
AU - Turhan, Irfan
N1 - Funding Information:
This work was supported in part by the Pennsylvania Agricultural Experiment Station , and The Akdeniz University Research Foundation [Grant number 2008.03.0121.009 ].
PY - 2018/4
Y1 - 2018/4
N2 - In this study, nonlinear sixteen mathematical models including Gompertz (G), generalized Gompertz (GG), modified Gompertz (MG), re-modified Gompertz (RMG), logistic (L), generalized logistic (GL), modified logistic (ML), re-modified logistic (RML), Richards (R), generalized Richards (GR), modified Richards (MR), re-modified Richards (RMR), Stannard (S), Baranyi (B), Weibull (W), and Morgan-Mercer-Flodin (MMF) were applied to fit cell growth, product formation, and sugar consumption of batch lactic acid (LA) fermentation in stirred tank bioreactor with carob extract. To determine the modeling success, root-mean-square-error (RMSE), mean-absolute-error (MAE), R2, slope, bias factor (BF), and accuracy factor (AF) were used. Results indicated that the best model for cell growth was MMF model (RMSE=0.24 g/L, MAE=0.16 g/L, R2=1.00, Slope=1.06, BF=1.04 and AF=1.16). For product formation, the best models selected were RMG (RMSE=1.33 g/L, MAE=1.00 g/L, R2=0.99, Slope=0.95, BF=0.94 and AF=1.11) and RMR (RMSE=1.33 g/L, MAE=1.01 g/L, R2=0.99, Slope=0.96, BF=0.94 and AF=1.12) models. As for sugar consumption, B model was the best model for estimation of experimental data (RMSE=0.88 g/L, MAE=0.52 g/L, R2=1.00, Slope=1.00, BF=1.00 and AF=1.01). Additionally, the most successful models that predict experimental kinetic data were GG, GL, S, and W models. Consequently, the best models selected could be used for more progress of LA production process in bioreactor with carob extract.
AB - In this study, nonlinear sixteen mathematical models including Gompertz (G), generalized Gompertz (GG), modified Gompertz (MG), re-modified Gompertz (RMG), logistic (L), generalized logistic (GL), modified logistic (ML), re-modified logistic (RML), Richards (R), generalized Richards (GR), modified Richards (MR), re-modified Richards (RMR), Stannard (S), Baranyi (B), Weibull (W), and Morgan-Mercer-Flodin (MMF) were applied to fit cell growth, product formation, and sugar consumption of batch lactic acid (LA) fermentation in stirred tank bioreactor with carob extract. To determine the modeling success, root-mean-square-error (RMSE), mean-absolute-error (MAE), R2, slope, bias factor (BF), and accuracy factor (AF) were used. Results indicated that the best model for cell growth was MMF model (RMSE=0.24 g/L, MAE=0.16 g/L, R2=1.00, Slope=1.06, BF=1.04 and AF=1.16). For product formation, the best models selected were RMG (RMSE=1.33 g/L, MAE=1.00 g/L, R2=0.99, Slope=0.95, BF=0.94 and AF=1.11) and RMR (RMSE=1.33 g/L, MAE=1.01 g/L, R2=0.99, Slope=0.96, BF=0.94 and AF=1.12) models. As for sugar consumption, B model was the best model for estimation of experimental data (RMSE=0.88 g/L, MAE=0.52 g/L, R2=1.00, Slope=1.00, BF=1.00 and AF=1.01). Additionally, the most successful models that predict experimental kinetic data were GG, GL, S, and W models. Consequently, the best models selected could be used for more progress of LA production process in bioreactor with carob extract.
UR - http://www.scopus.com/inward/record.url?scp=85044597511&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85044597511&partnerID=8YFLogxK
U2 - 10.1016/j.bcab.2018.03.018
DO - 10.1016/j.bcab.2018.03.018
M3 - Article
AN - SCOPUS:85044597511
VL - 14
SP - 254
EP - 263
JO - Biocatalysis and Agricultural Biotechnology
JF - Biocatalysis and Agricultural Biotechnology
SN - 1878-8181
ER -