Maturation-associated destabilization of hepatitis b virus nucleocapsid

Xiuji Cui, Laurie Ludgate, Xiaojun Ning, Jianming Hu

Research output: Contribution to journalArticle

2 Scopus citations

Abstract

The mature nucleocapsid (NC) of hepatitis B virus containing the relaxed circular (RC) DNA genome can be secreted extracellularly as virions after envelopment with the viral surface proteins or, alternatively, can be disassembled to release RC DNA (i.e., uncoating) into the host cell nucleus to form the covalently closed circular (CCC) DNA, which sustains viral replication and persistence. In contrast, immature NCs containing the viral single-stranded DNA or the pregenomic RNA are incompetent for either envelopment or uncoating. Little is currently known about how mature NCs, and not the immature ones, are specifically selected for these processes. Here, we have carried out a biochemical analysis of the different NC populations upon their separation through sucrose gradient centrifugation. We have found that the maturation of NCs is associated with their destabilization, manifested as increased protease and nuclease sensitivity, altered sedimentation during sucrose gradient centrifugation, and retarded mobility during native agarose gel electrophoresis. Also, three distinct populations of intracellular mature NCs could be differentiated based on these characteristics. Furthermore, mature NCs generated in vitro under cell-free conditions acquired similar properties. These results have thus revealed significant structural changes associated with NC maturation that likely play a role in the selective uncoating of the mature NC for CCC DNA formation and/or its preferential envelopment for virion secretion.

Original languageEnglish (US)
Pages (from-to)11493-11503
Number of pages11
JournalJournal of virology
Volume87
Issue number21
DOIs
StatePublished - 2013

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint Dive into the research topics of 'Maturation-associated destabilization of hepatitis b virus nucleocapsid'. Together they form a unique fingerprint.

  • Cite this