Maximum power, optimal load, and impedance analysis of piezoelectric vibration energy harvesters

Yabin Liao, Junrui Liang

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

This paper performs an analysis of maximum power output of piezoelectric energy harvesters. It has been observed that there exists an overall power limit that can be obtained by tuning energy harvesting circuits, including both linear and nonlinear. The significance of the power limit is that it represents the maximum possible power output or capacity of an energy harvester. In other words, the harvested power is always capped by this limit regardless of the type and tuning of the energy harvesting circuit interface. The power limit and the optimal generalized electrical load or impedance to reach this power limit are first obtained directly by using the electromechanically coupled equations of the system, and then obtained by using the equivalent circuit analysis and impedance matching approach. Both are commonly used methods in energy harvesting research. This paper presents an effort to unify them but also offer insights on the power limit from two different perspectives. In the second part of this paper, the power limit and impedance matching results are applied to a linear energy harvesting circuit interface, i.e., resistive energy harvesting (REH) circuit, and a nonlinear circuit interface, i.e., standard AC-DC energy harvesting (SEH) circuit, to study their physical constraints on the impedance matching and clearly explain their power behaviors such as the maximum power and the effect of electromechanical coupling on the power. In addition, closed-form expressions, a relationship between the mechanical damping and the effective electromechanical coupling coefficient, to define the three types of coupling, i.e., weak, critical, strong, are obtained. It is found that the SEH harvesters require about 1.5 times of minimum electromechanical coupling of that of REH harvesters to reach the power limit, and the frequency bandwidth between the two power limit frequencies of a SEH harvester is narrower than that of a REH harvester given the same level of strong electromechanical coupling.

Original languageEnglish (US)
Article number075053
JournalSmart Materials and Structures
Volume27
Issue number7
DOIs
StatePublished - Jun 22 2018

Fingerprint

Harvesters
Energy harvesting
impedance
vibration
Electromechanical coupling
Networks (circuits)
impedance matching
energy
Tuning
tuning
Electric network analysis
Equivalent circuits
output
coupling coefficients
equivalent circuits
Damping
alternating current
Bandwidth
damping
direct current

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Civil and Structural Engineering
  • Atomic and Molecular Physics, and Optics
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Electrical and Electronic Engineering

Cite this

@article{62cd69ed6fa64c75a71c2ef1d3bf5eef,
title = "Maximum power, optimal load, and impedance analysis of piezoelectric vibration energy harvesters",
abstract = "This paper performs an analysis of maximum power output of piezoelectric energy harvesters. It has been observed that there exists an overall power limit that can be obtained by tuning energy harvesting circuits, including both linear and nonlinear. The significance of the power limit is that it represents the maximum possible power output or capacity of an energy harvester. In other words, the harvested power is always capped by this limit regardless of the type and tuning of the energy harvesting circuit interface. The power limit and the optimal generalized electrical load or impedance to reach this power limit are first obtained directly by using the electromechanically coupled equations of the system, and then obtained by using the equivalent circuit analysis and impedance matching approach. Both are commonly used methods in energy harvesting research. This paper presents an effort to unify them but also offer insights on the power limit from two different perspectives. In the second part of this paper, the power limit and impedance matching results are applied to a linear energy harvesting circuit interface, i.e., resistive energy harvesting (REH) circuit, and a nonlinear circuit interface, i.e., standard AC-DC energy harvesting (SEH) circuit, to study their physical constraints on the impedance matching and clearly explain their power behaviors such as the maximum power and the effect of electromechanical coupling on the power. In addition, closed-form expressions, a relationship between the mechanical damping and the effective electromechanical coupling coefficient, to define the three types of coupling, i.e., weak, critical, strong, are obtained. It is found that the SEH harvesters require about 1.5 times of minimum electromechanical coupling of that of REH harvesters to reach the power limit, and the frequency bandwidth between the two power limit frequencies of a SEH harvester is narrower than that of a REH harvester given the same level of strong electromechanical coupling.",
author = "Yabin Liao and Junrui Liang",
year = "2018",
month = "6",
day = "22",
doi = "10.1088/1361-665X/aaca56",
language = "English (US)",
volume = "27",
journal = "Smart Materials and Structures",
issn = "0964-1726",
publisher = "IOP Publishing Ltd.",
number = "7",

}

Maximum power, optimal load, and impedance analysis of piezoelectric vibration energy harvesters. / Liao, Yabin; Liang, Junrui.

In: Smart Materials and Structures, Vol. 27, No. 7, 075053, 22.06.2018.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Maximum power, optimal load, and impedance analysis of piezoelectric vibration energy harvesters

AU - Liao, Yabin

AU - Liang, Junrui

PY - 2018/6/22

Y1 - 2018/6/22

N2 - This paper performs an analysis of maximum power output of piezoelectric energy harvesters. It has been observed that there exists an overall power limit that can be obtained by tuning energy harvesting circuits, including both linear and nonlinear. The significance of the power limit is that it represents the maximum possible power output or capacity of an energy harvester. In other words, the harvested power is always capped by this limit regardless of the type and tuning of the energy harvesting circuit interface. The power limit and the optimal generalized electrical load or impedance to reach this power limit are first obtained directly by using the electromechanically coupled equations of the system, and then obtained by using the equivalent circuit analysis and impedance matching approach. Both are commonly used methods in energy harvesting research. This paper presents an effort to unify them but also offer insights on the power limit from two different perspectives. In the second part of this paper, the power limit and impedance matching results are applied to a linear energy harvesting circuit interface, i.e., resistive energy harvesting (REH) circuit, and a nonlinear circuit interface, i.e., standard AC-DC energy harvesting (SEH) circuit, to study their physical constraints on the impedance matching and clearly explain their power behaviors such as the maximum power and the effect of electromechanical coupling on the power. In addition, closed-form expressions, a relationship between the mechanical damping and the effective electromechanical coupling coefficient, to define the three types of coupling, i.e., weak, critical, strong, are obtained. It is found that the SEH harvesters require about 1.5 times of minimum electromechanical coupling of that of REH harvesters to reach the power limit, and the frequency bandwidth between the two power limit frequencies of a SEH harvester is narrower than that of a REH harvester given the same level of strong electromechanical coupling.

AB - This paper performs an analysis of maximum power output of piezoelectric energy harvesters. It has been observed that there exists an overall power limit that can be obtained by tuning energy harvesting circuits, including both linear and nonlinear. The significance of the power limit is that it represents the maximum possible power output or capacity of an energy harvester. In other words, the harvested power is always capped by this limit regardless of the type and tuning of the energy harvesting circuit interface. The power limit and the optimal generalized electrical load or impedance to reach this power limit are first obtained directly by using the electromechanically coupled equations of the system, and then obtained by using the equivalent circuit analysis and impedance matching approach. Both are commonly used methods in energy harvesting research. This paper presents an effort to unify them but also offer insights on the power limit from two different perspectives. In the second part of this paper, the power limit and impedance matching results are applied to a linear energy harvesting circuit interface, i.e., resistive energy harvesting (REH) circuit, and a nonlinear circuit interface, i.e., standard AC-DC energy harvesting (SEH) circuit, to study their physical constraints on the impedance matching and clearly explain their power behaviors such as the maximum power and the effect of electromechanical coupling on the power. In addition, closed-form expressions, a relationship between the mechanical damping and the effective electromechanical coupling coefficient, to define the three types of coupling, i.e., weak, critical, strong, are obtained. It is found that the SEH harvesters require about 1.5 times of minimum electromechanical coupling of that of REH harvesters to reach the power limit, and the frequency bandwidth between the two power limit frequencies of a SEH harvester is narrower than that of a REH harvester given the same level of strong electromechanical coupling.

UR - http://www.scopus.com/inward/record.url?scp=85049694356&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85049694356&partnerID=8YFLogxK

U2 - 10.1088/1361-665X/aaca56

DO - 10.1088/1361-665X/aaca56

M3 - Article

AN - SCOPUS:85049694356

VL - 27

JO - Smart Materials and Structures

JF - Smart Materials and Structures

SN - 0964-1726

IS - 7

M1 - 075053

ER -