Meal detection and meal size estimation for type 1 diabetes treatment: A variable state dimension approach

Jinyu Xie, Qian Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

To compensate the glucose variability caused by meals is essential in developing Artificial Pancreas for type 1 diabetes. Most existing algorithms rely on meal announcements and determine the insulin doses based on an Insulin-to-Carbohydrate ratio (I:C ratio). However, patients, especially young patients, often forget to provide meal information under natural living conditions. A Variable State Dimension (VSD) based algorithm is developed to detect meals which are unknown to the controller (unannounced meals). The algorithm is evaluated using an FDA-approved UVa/Padova simulator and has demonstrated to achieve 95% success rate in meal detection with less than 17% false alarm rate. In addition, the average meal size estimation error is no more than 13%. We then integrate the VSD-based meal detection and estimation algorithm with our previous published glucose dynamics model consisting of both insulin and carbohydrate inputs. The goodness of fit for 30min-ahead glucose predictions using meal information provided by the VSD-based algorithm has increased by 86% in average compared to the prediction using a model without meal input based on plasma blood glucose (BG) data. Simulation results also show that compared to several meal detection/estimation algorithms in the literature, the VSD-based algorithm has comparable or shorter detection time.

Original languageEnglish (US)
Title of host publicationAdaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2
Subtitle of host publicationHybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791857243
DOIs
StatePublished - Jan 1 2015
EventASME 2015 Dynamic Systems and Control Conference, DSCC 2015 - Columbus, United States
Duration: Oct 28 2015Oct 30 2015

Publication series

NameASME 2015 Dynamic Systems and Control Conference, DSCC 2015
Volume1

Other

OtherASME 2015 Dynamic Systems and Control Conference, DSCC 2015
CountryUnited States
CityColumbus
Period10/28/1510/30/15

All Science Journal Classification (ASJC) codes

  • Industrial and Manufacturing Engineering
  • Mechanical Engineering
  • Control and Systems Engineering

Fingerprint Dive into the research topics of 'Meal detection and meal size estimation for type 1 diabetes treatment: A variable state dimension approach'. Together they form a unique fingerprint.

  • Cite this

    Xie, J., & Wang, Q. (2015). Meal detection and meal size estimation for type 1 diabetes treatment: A variable state dimension approach. In Adaptive and Intelligent Systems Control; Advances in Control Design Methods; Advances in Non-Linear and Optimal Control; Advances in Robotics; Advances in Wind Energy Systems; Aerospace Applications; Aerospace Power Optimization; Assistive Robotics; Automotive 2: Hybrid Electric Vehicles; Automotive 3: Internal Combustion Engines; Automotive Engine Control; Battery Management; Bio Engineering Applications; Biomed and Neural Systems; Connected Vehicles; Control of Robotic Systems (ASME 2015 Dynamic Systems and Control Conference, DSCC 2015; Vol. 1). American Society of Mechanical Engineers. https://doi.org/10.1115/DSCC2015-9905