Mean-shift blob tracking through scale space

Research output: Contribution to journalConference articlepeer-review

811 Citations (SciVal)

Abstract

The mean-shift algorithm is an efficient technique for tracking 2D blobs through an image. Although the scale of the mean-shift kernel is a crucial parameter, there is presently no clean mechanism for choosing or updating scale while tracking blobs that are changing in size. We adapt Lindeberg's theory of feature scale selection based on local maxima of differential scale-space filters to the problem of selecting kernel scale for mean-shift blob tracking. We show that a difference of Gaussian (DOG) mean-shift kernel enables efficient tracking of blobs through scale space. Using this kernel requires generalizing the mean-shift algorithm to handle images that contain negative sample weights.

Original languageEnglish (US)
Pages (from-to)II/234-II/240
JournalProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2
StatePublished - 2003
Event2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003 - Madison, WI, United States
Duration: Jun 18 2003Jun 20 2003

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Cite this