Measurement of bacterial collision efficiencies in porous media

Mark J. Gross, Otto Albinger, David G. Jewett, Bruce Ernest Logan, Roger C. Bales, Robert G. Arnold

Research output: Contribution to journalArticle

45 Scopus citations

Abstract

A new method, utilizing radiolabeled (3H-leucine) cells and 1-cm columns packed with 40-μm borosilicate glass beads was used to estimate bacterial collision efficiency by directly measuring the retention of cells in porous media. At a fractional retention of 0.051 (n = 3), the coefficient of variation was 0.037, permitting meaningful estimation of collision efficiencies as low as 3 × 10-5. Collision efficiency was a function of the ionic strength and pecies identity; α increased from 1.6 × 10-3 to 1.4 × 10-2 for A. paradoxus in 10-5 and 10-3 M NaCl solutions, respectively, and from 8.9 × 10-3 to 6.2 × 10-2 for P. fluorescens in the same solutions. Results were not sensitive to test parameters such as velocity, volume filtered and rinse volume. The new procedure provides a convenient, reliable, accurate method for estimating low-end biocolloid collision efficiencies in porous media. In the range α < 0.01, the method is economical, significantly faster, and much more reliable than other published procedures. Its application may accelerate efforts to establish functional relationships between biocolloid collision efficiency and governing physical-chemical variables.

Original languageEnglish (US)
Pages (from-to)1151-1158
Number of pages8
JournalWater Research
Volume29
Issue number4
DOIs
StatePublished - Jan 1 1995

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Ecological Modeling
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution

Cite this

Gross, M. J., Albinger, O., Jewett, D. G., Logan, B. E., Bales, R. C., & Arnold, R. G. (1995). Measurement of bacterial collision efficiencies in porous media. Water Research, 29(4), 1151-1158. https://doi.org/10.1016/0043-1354(94)00235-Y