Measurement of burst pressure of capillary burst valve

Hong Chen, Toru Yamada, Mohammad Faghri

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Capillary burst valve (CBV), a counterpart to an elastomeric diaphragm microvalve, handles fluid in microchannels by capillarity. Thus, it avoids integration of mechanical components. We experimentally estimated the burst pressure, beyond which CBV cannot hold fluid, using fluids with distinct surface tensions in CBVs grafted with distinct surface constitutions in microchannels. We found that both the fluid surface tension and the solid surface constitution influence the burst pressure. The burst pressure reduces more significantly under the influence of the fluid surface tension.

Original languageEnglish (US)
Title of host publicationASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010
Pages1167-1172
Number of pages6
EditionPARTS A AND B
DOIs
StatePublished - Dec 1 2010
EventASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2010 Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting - Montreal, QC, Canada
Duration: Aug 1 2010Aug 5 2010

Publication series

NameASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010
NumberPARTS A AND B

Conference

ConferenceASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2010 Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting
CountryCanada
CityMontreal, QC
Period8/1/108/5/10

All Science Journal Classification (ASJC) codes

  • Fluid Flow and Transfer Processes

Fingerprint Dive into the research topics of 'Measurement of burst pressure of capillary burst valve'. Together they form a unique fingerprint.

  • Cite this

    Chen, H., Yamada, T., & Faghri, M. (2010). Measurement of burst pressure of capillary burst valve. In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010 (PARTS A AND B ed., pp. 1167-1172). (ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010; No. PARTS A AND B). https://doi.org/10.1115/FEDSM-ICNMM2010-30954