Measurement of the shear modulus in thin-layered tissues using numerical simulations and shear wave elastography

Seyedali Sadeghi, Daniel H. Cortes

Research output: Contribution to journalArticle

Abstract

Measurement of mechanical properties of thin-layered tissues has broad applications in the diagnosis of several pathologies. Ultrasound shear wave elastography (SWE) measures the shear wave speed as a means of estimating the mechanical properties of tissues. However, the wave speed in thin-layered tissues is affected by their thickness and the properties of surrounding tissues. The objective of this study is to introduce a method that combines numerical simulations and SWE measurements to provide a more accurate calculation of shear modulus in layered tissues. In the proposed method, the spatial distribution of the acoustic radiation force (ARF) emitted by the transducer was first computed. The ARF was then used as input for simulating the guided wave propagation in the thin layer with its surroundings. The simulations were repeated for several values of the shear modulus of the layer to obtain the corresponding simulated wave speed. By comparing the measured and simulated wave speeds, a more accurate (corrected) shear modulus can be obtained. The proposed method was validated using experiments in agarose gels. In-vivo SWE measurements were also performed for the fascia of the tibialis anterior (TA) muscle and the aponeurosis of musculotendinous junction (MTJ) in medial gastrocnemius (MG) head in a group of healthy individuals. The simulated and measured wave speed in gel constructs were in good agreement with a maximum error of 7.22%. The average of measured wave speed of fascia and aponeurosis was 3.90 ± 0.16 m/s and 2.33 ± 0.60 m/s, while the corresponding corrected shear modulus was 95.63 ± 17.89 kPa and 6.36 ± 8.98 kPa, respectively. Thickness had a substantial effect on the wave speed in thin-layered tissues with decreasing speed for thinner tissues. The SWE-based simulation method presented in this study has the potential of enhancing clinical assessment for several musculoskeletal conditions involving thin-layered tissues.

Original languageEnglish (US)
Article number103502
JournalJournal of the Mechanical Behavior of Biomedical Materials
Volume102
DOIs
StatePublished - Feb 2020

Fingerprint

Shear waves
Elastic moduli
Tissue
Computer simulation
Gels
Acoustics
Radiation
Mechanical properties
Guided electromagnetic wave propagation
Pathology
Sepharose
Wave propagation
Spatial distribution
Muscle
Transducers
Ultrasonics

All Science Journal Classification (ASJC) codes

  • Biomaterials
  • Biomedical Engineering
  • Mechanics of Materials

Cite this

@article{172be23e0e0a4c5781ede3aa0cc5d365,
title = "Measurement of the shear modulus in thin-layered tissues using numerical simulations and shear wave elastography",
abstract = "Measurement of mechanical properties of thin-layered tissues has broad applications in the diagnosis of several pathologies. Ultrasound shear wave elastography (SWE) measures the shear wave speed as a means of estimating the mechanical properties of tissues. However, the wave speed in thin-layered tissues is affected by their thickness and the properties of surrounding tissues. The objective of this study is to introduce a method that combines numerical simulations and SWE measurements to provide a more accurate calculation of shear modulus in layered tissues. In the proposed method, the spatial distribution of the acoustic radiation force (ARF) emitted by the transducer was first computed. The ARF was then used as input for simulating the guided wave propagation in the thin layer with its surroundings. The simulations were repeated for several values of the shear modulus of the layer to obtain the corresponding simulated wave speed. By comparing the measured and simulated wave speeds, a more accurate (corrected) shear modulus can be obtained. The proposed method was validated using experiments in agarose gels. In-vivo SWE measurements were also performed for the fascia of the tibialis anterior (TA) muscle and the aponeurosis of musculotendinous junction (MTJ) in medial gastrocnemius (MG) head in a group of healthy individuals. The simulated and measured wave speed in gel constructs were in good agreement with a maximum error of 7.22{\%}. The average of measured wave speed of fascia and aponeurosis was 3.90 ± 0.16 m/s and 2.33 ± 0.60 m/s, while the corresponding corrected shear modulus was 95.63 ± 17.89 kPa and 6.36 ± 8.98 kPa, respectively. Thickness had a substantial effect on the wave speed in thin-layered tissues with decreasing speed for thinner tissues. The SWE-based simulation method presented in this study has the potential of enhancing clinical assessment for several musculoskeletal conditions involving thin-layered tissues.",
author = "Seyedali Sadeghi and Cortes, {Daniel H.}",
year = "2020",
month = "2",
doi = "10.1016/j.jmbbm.2019.103502",
language = "English (US)",
volume = "102",
journal = "Journal of the Mechanical Behavior of Biomedical Materials",
issn = "1751-6161",
publisher = "Elsevier BV",

}

TY - JOUR

T1 - Measurement of the shear modulus in thin-layered tissues using numerical simulations and shear wave elastography

AU - Sadeghi, Seyedali

AU - Cortes, Daniel H.

PY - 2020/2

Y1 - 2020/2

N2 - Measurement of mechanical properties of thin-layered tissues has broad applications in the diagnosis of several pathologies. Ultrasound shear wave elastography (SWE) measures the shear wave speed as a means of estimating the mechanical properties of tissues. However, the wave speed in thin-layered tissues is affected by their thickness and the properties of surrounding tissues. The objective of this study is to introduce a method that combines numerical simulations and SWE measurements to provide a more accurate calculation of shear modulus in layered tissues. In the proposed method, the spatial distribution of the acoustic radiation force (ARF) emitted by the transducer was first computed. The ARF was then used as input for simulating the guided wave propagation in the thin layer with its surroundings. The simulations were repeated for several values of the shear modulus of the layer to obtain the corresponding simulated wave speed. By comparing the measured and simulated wave speeds, a more accurate (corrected) shear modulus can be obtained. The proposed method was validated using experiments in agarose gels. In-vivo SWE measurements were also performed for the fascia of the tibialis anterior (TA) muscle and the aponeurosis of musculotendinous junction (MTJ) in medial gastrocnemius (MG) head in a group of healthy individuals. The simulated and measured wave speed in gel constructs were in good agreement with a maximum error of 7.22%. The average of measured wave speed of fascia and aponeurosis was 3.90 ± 0.16 m/s and 2.33 ± 0.60 m/s, while the corresponding corrected shear modulus was 95.63 ± 17.89 kPa and 6.36 ± 8.98 kPa, respectively. Thickness had a substantial effect on the wave speed in thin-layered tissues with decreasing speed for thinner tissues. The SWE-based simulation method presented in this study has the potential of enhancing clinical assessment for several musculoskeletal conditions involving thin-layered tissues.

AB - Measurement of mechanical properties of thin-layered tissues has broad applications in the diagnosis of several pathologies. Ultrasound shear wave elastography (SWE) measures the shear wave speed as a means of estimating the mechanical properties of tissues. However, the wave speed in thin-layered tissues is affected by their thickness and the properties of surrounding tissues. The objective of this study is to introduce a method that combines numerical simulations and SWE measurements to provide a more accurate calculation of shear modulus in layered tissues. In the proposed method, the spatial distribution of the acoustic radiation force (ARF) emitted by the transducer was first computed. The ARF was then used as input for simulating the guided wave propagation in the thin layer with its surroundings. The simulations were repeated for several values of the shear modulus of the layer to obtain the corresponding simulated wave speed. By comparing the measured and simulated wave speeds, a more accurate (corrected) shear modulus can be obtained. The proposed method was validated using experiments in agarose gels. In-vivo SWE measurements were also performed for the fascia of the tibialis anterior (TA) muscle and the aponeurosis of musculotendinous junction (MTJ) in medial gastrocnemius (MG) head in a group of healthy individuals. The simulated and measured wave speed in gel constructs were in good agreement with a maximum error of 7.22%. The average of measured wave speed of fascia and aponeurosis was 3.90 ± 0.16 m/s and 2.33 ± 0.60 m/s, while the corresponding corrected shear modulus was 95.63 ± 17.89 kPa and 6.36 ± 8.98 kPa, respectively. Thickness had a substantial effect on the wave speed in thin-layered tissues with decreasing speed for thinner tissues. The SWE-based simulation method presented in this study has the potential of enhancing clinical assessment for several musculoskeletal conditions involving thin-layered tissues.

UR - http://www.scopus.com/inward/record.url?scp=85073610037&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85073610037&partnerID=8YFLogxK

U2 - 10.1016/j.jmbbm.2019.103502

DO - 10.1016/j.jmbbm.2019.103502

M3 - Article

AN - SCOPUS:85073610037

VL - 102

JO - Journal of the Mechanical Behavior of Biomedical Materials

JF - Journal of the Mechanical Behavior of Biomedical Materials

SN - 1751-6161

M1 - 103502

ER -