Measurements of velocity-changing collision kernels

Kurt Gibble, A. Gallagher

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

Measurements of velocity-changing collision (VCC) kernels are obtained using velocity-selective optical pumping. This is the first measurement of the shape of an elastic VCC kernel over the full thermal range of velocity changes. Since ground-state collisions are studied (5s1/2 Rb and He, Ne, Ar, Kr, or Xe), very low buffer-gas pressures can be used, and therefore pressure broadening (dephasing collisions) does not obscure the effects of VCC. The data are deconvolved to eliminate the effects of the natural linewidth and are then extrapolated with respect to buffer-gas pressure to determine the single-collision limit. For small initial velocities, the measured kernels are consistent with a hard-sphere model for large velocity changes, but differ significantly for small velocity changes. The measured VCC kernels for large initial velocities and large velocity changes do not exhibit this agreement with the hard-sphere kernel. This implies that information about the inter- atomic potential can be obtained from a measurement of VCC kernels. We also show the inadequacy of the much-used Keilson-Storer kernel [J. Appl. Math. 10, 243 (1952)].

Original languageEnglish (US)
Pages (from-to)1366-1380
Number of pages15
JournalPhysical Review A
Volume43
Issue number3
DOIs
StatePublished - Jan 1 1991

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics

Fingerprint Dive into the research topics of 'Measurements of velocity-changing collision kernels'. Together they form a unique fingerprint.

Cite this