Mechanical performance analysis of ultem 9085 in a heated, irradiated environment

Matthew B. Ng, Sean N. Brennan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper investigates the thermal and radiation performance of 3D-printed ULTEM materials following ASTM standard D638. ULTEM is a thermoplastic in the polyetherimide (PEI) family that is regularly used as a high-grade material for 3D printing. This material has similar properties to polyether ether ketone (PEEK), which is another thermoplastic that has strong mechanical properties at elevated temperature conditions. While PEEK has stronger mechanical properties, ULTEM is significantly more cost efficient to acquire and process via 3D printing. Also, most 3D printers are unable to utilize PEEK because of the significantly higher temperature requirements this material imposes on a 3D printer. This work is motivated by the need to rapidly deploy robotic inspection systems within a nuclear canister environment, which exposes the material to temperatures up to 170°C (340°F), and radiation levels of 270 Gy/hr (27 krad/hr), which are significantly beyond that of conventional 3D-printed parts. The design analysis was performed via an experiment consisting of three treatment groups of dogbone ULTEM test pieces. After tensile testing all of the pieces, the material properties were compared to those of the control group. These results allow manufacturers to select a more cost-effective material to build parts to operate in such a harsh high-temperature, high-radiation environment, which could include applications in both space systems and nuclear inspection robotics. Specifically, the results were used to guide the development of a robust robotic inspection system for the Nuclear Energy University Program (NEUP) by replacing complex parts with easily-fabricated 3D-printed ULTEM pieces.

Original languageEnglish (US)
Title of host publicationMechanics of Solids, Structures, and Fluids
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791852149
DOIs
StatePublished - Jan 1 2018
EventASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018 - Pittsburgh, United States
Duration: Nov 9 2018Nov 15 2018

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume9

Other

OtherASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018
CountryUnited States
CityPittsburgh
Period11/9/1811/15/18

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Mechanical performance analysis of ultem 9085 in a heated, irradiated environment'. Together they form a unique fingerprint.

  • Cite this

    Ng, M. B., & Brennan, S. N. (2018). Mechanical performance analysis of ultem 9085 in a heated, irradiated environment. In Mechanics of Solids, Structures, and Fluids (ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 9). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/IMECE2018-88181