Abstract
CO2 sequestration in geological coal formations is a promising pathway to store a huge amount of CO2 due to a strong CO2 affinity on coal. It has been reported that CO2 sorption can cause a strength reduction of coals. However, the mechanism-based understandings of CO2-coal interactions induced alterations are still challenging in micro-to-nano scale. We conducted the combined grid-based nanoindentation tests and FESEM-EDS analyses to understand and quantify the mechanical property variations and distributions of coals in micro- or nano-scale due to its mineral and structural variations. We also quantified the mechanical property alterations induced by gaseous CO2, ScCO2, and ScCO2-water mixture treatments at different treating durations. The combined results from the FESEM-EDS and XRD confirmed that the heterogeneity of two tested coal is prevailing at micro-to-nano scale and the corresponding mechanical properties are composition- and microstructure-dependent. The mechanical properties of coals can be altered by gaseous CO2, ScCO2, and ScCO2-water mixture treatments primarily due to the organic carbon-CO2 interactions and water hydration effects in wetted coals, or potentially due to the dissolution and precipitation of minerals occurred in fluid environment typically under the ScCO2-water treatment condition.
Original language | English (US) |
---|---|
Article number | 123575 |
Journal | Energy |
Volume | 248 |
DOIs | |
State | Published - Jun 1 2022 |
All Science Journal Classification (ASJC) codes
- Civil and Structural Engineering
- Building and Construction
- Modeling and Simulation
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Energy Engineering and Power Technology
- Pollution
- Energy(all)
- Mechanical Engineering
- Industrial and Manufacturing Engineering
- Management, Monitoring, Policy and Law
- Electrical and Electronic Engineering