MedPath: Augmenting health risk prediction via medical knowledge paths

Muchao Ye, Suhan Cui, Yaqing Wang, Junyu Luo, Cao Xiao, Fenglong Ma

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

The broad adoption of electronic health records (EHR) data and the availability of biomedical knowledge graphs (KGs) on the web have provided clinicians and researchers unprecedented resources and opportunities for conducting health risk predictions to improve healthcare quality and medical resource allocation. Existing methods have focused on improving the EHR feature representations using attention mechanisms, time-aware models, or external knowledge. However, they ignore the importance of using personalized information to make predictions. Besides, the reliability of their prediction interpretations needs to be improved since their interpretable attention scores are not explicitly reasoned from disease progression paths. In this paper, we propose MedPath to solve these challenges and augment existing risk prediction models with the ability to use personalized information and provide reliable interpretations inferring from disease progression paths. Firstly, MedPath extracts personalized knowledge graphs (PKGs) containing all possible disease progression paths from observed symptoms to target diseases from a large-scale online medical knowledge graph. Next, to augment existing EHR encoders for achieving better predictions, MedPath learns a PKG embedding by conducting multi-hop message passing from symptom nodes to target disease nodes through a graph neural network encoder. Since MedPath reasons disease progression by paths existing in PKGs, it can provide explicit explanations for the prediction by pointing out how observed symptoms can finally lead to target diseases. Experimental results on three real-world medical datasets show that MedPath is effective in improving the performance of eight state-of-the-art methods with higher F1 scores and AUCs. Our case study also demonstrates that MedPath can greatly improve the explicitness of the risk prediction interpretation.1

Original languageEnglish (US)
Title of host publicationThe Web Conference 2021 - Proceedings of the World Wide Web Conference, WWW 2021
PublisherAssociation for Computing Machinery, Inc
Pages1397-1409
Number of pages13
ISBN (Electronic)9781450383127
DOIs
StatePublished - Apr 19 2021
Event2021 World Wide Web Conference, WWW 2021 - Ljubljana, Slovenia
Duration: Apr 19 2021Apr 23 2021

Publication series

NameThe Web Conference 2021 - Proceedings of the World Wide Web Conference, WWW 2021

Conference

Conference2021 World Wide Web Conference, WWW 2021
Country/TerritorySlovenia
CityLjubljana
Period4/19/214/23/21

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Software

Fingerprint

Dive into the research topics of 'MedPath: Augmenting health risk prediction via medical knowledge paths'. Together they form a unique fingerprint.

Cite this