Mesenchymal Stem Cell Deformability and Implications for Microvascular Sequestration

Herbert H. Lipowsky, Daniel T. Bowers, Brittany L. Banik, Justin Lee Brown

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Mesenchymal stem cells (MSCs) have received considerable attention in regenerative medicine, particularly in light of prospects for targeted delivery by intra-arterial injection. However, little is known about the mechanics of MSC sequestration in the microvasculature and the yield pressure (PY), above which MSCs will pass through microvessels of a given diameter. The objectives of the current study were to delineate the dependency of PY on cell size and the heterogeneity of cell mechanical properties and diameters (DCELL) of cultured MSCs. To this end the transient filtration test was employed to elucidate the mean filtration pressure (〈PY〉) for an ensemble of pores of a given size (DPORE) similar to in vivo microvessels. Cultured MSCs had a log-normal distribution of cell diameters (DCELL) with a mean of 15.8 ± 0.73 SD μm. MSC clearance from track-etched polycarbonate filters was studied for pore diameters of 7.3–15.4 μm. The pressure required to clear cells from filters with 30–85 × 103 pores rose exponentially with the ratio λ = DCELL/DPORE for 1.1 ≤ λ ≤ 2.2. The clearance of cells from each filter was characterized by a log-normal distribution in PY, with a mean filtration pressure of 0.02 ≤ 〈PY〉 ≤ 6.7 cmH2O. For λ ≤ 1.56, the yield pressure (PY) was well represented by the cortical shell model of a cell with a viscous interior encapsulated by a shell under cortical tension τ0 = 0.99 ± 0.42 SD dyn/cm. For λ > 1.56, the 〈PY〉 characteristic of the cell population rose exponentially with λ. Analysis of the mean filtration pressure (〈PY〉) of each sample suggested that the larger diameter cells that skewed the distribution of DCELL contributed to about 20% of the mean filtration pressure. Further, if all cells had the same deformability (i.e., PY as a function of λ) as the average cell population, then 〈PY〉 would have risen an order of magnitude above the average from fivefold at λ = 1.56 to 200-fold at λ = 2.1. Comparison of 〈PY〉 to published microvascular pressures suggested that 〈PY〉 may exceed microvessel pressure drops for λ exceeding 2.1, and rise 14-fold above capillary pressure drop at λ = 3 leading to 100% sequestration. However, due to the large variance of in vivo microvascular pressures entrapment of MSCs may be mitigated. Thus it is suggested that selecting fractions of the MSC population according to cell deformability may permit optimization of entrapment at sites targeted for tissue regeneration.

Original languageEnglish (US)
Pages (from-to)640-654
Number of pages15
JournalAnnals of Biomedical Engineering
Volume46
Issue number4
DOIs
StatePublished - Apr 1 2018

Fingerprint

Formability
Stem cells
Normal distribution
Pressure drop
Cells
Tissue regeneration
Capillarity
Polycarbonates
Mechanics
Mechanical properties

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering

Cite this

Lipowsky, Herbert H. ; Bowers, Daniel T. ; Banik, Brittany L. ; Brown, Justin Lee. / Mesenchymal Stem Cell Deformability and Implications for Microvascular Sequestration. In: Annals of Biomedical Engineering. 2018 ; Vol. 46, No. 4. pp. 640-654.
@article{a1515c1a24124d868c0497ffa1cbdbfb,
title = "Mesenchymal Stem Cell Deformability and Implications for Microvascular Sequestration",
abstract = "Mesenchymal stem cells (MSCs) have received considerable attention in regenerative medicine, particularly in light of prospects for targeted delivery by intra-arterial injection. However, little is known about the mechanics of MSC sequestration in the microvasculature and the yield pressure (PY), above which MSCs will pass through microvessels of a given diameter. The objectives of the current study were to delineate the dependency of PY on cell size and the heterogeneity of cell mechanical properties and diameters (DCELL) of cultured MSCs. To this end the transient filtration test was employed to elucidate the mean filtration pressure (〈PY〉) for an ensemble of pores of a given size (DPORE) similar to in vivo microvessels. Cultured MSCs had a log-normal distribution of cell diameters (DCELL) with a mean of 15.8 ± 0.73 SD μm. MSC clearance from track-etched polycarbonate filters was studied for pore diameters of 7.3–15.4 μm. The pressure required to clear cells from filters with 30–85 × 103 pores rose exponentially with the ratio λ = DCELL/DPORE for 1.1 ≤ λ ≤ 2.2. The clearance of cells from each filter was characterized by a log-normal distribution in PY, with a mean filtration pressure of 0.02 ≤ 〈PY〉 ≤ 6.7 cmH2O. For λ ≤ 1.56, the yield pressure (PY) was well represented by the cortical shell model of a cell with a viscous interior encapsulated by a shell under cortical tension τ0 = 0.99 ± 0.42 SD dyn/cm. For λ > 1.56, the 〈PY〉 characteristic of the cell population rose exponentially with λ. Analysis of the mean filtration pressure (〈PY〉) of each sample suggested that the larger diameter cells that skewed the distribution of DCELL contributed to about 20{\%} of the mean filtration pressure. Further, if all cells had the same deformability (i.e., PY as a function of λ) as the average cell population, then 〈PY〉 would have risen an order of magnitude above the average from fivefold at λ = 1.56 to 200-fold at λ = 2.1. Comparison of 〈PY〉 to published microvascular pressures suggested that 〈PY〉 may exceed microvessel pressure drops for λ exceeding 2.1, and rise 14-fold above capillary pressure drop at λ = 3 leading to 100{\%} sequestration. However, due to the large variance of in vivo microvascular pressures entrapment of MSCs may be mitigated. Thus it is suggested that selecting fractions of the MSC population according to cell deformability may permit optimization of entrapment at sites targeted for tissue regeneration.",
author = "Lipowsky, {Herbert H.} and Bowers, {Daniel T.} and Banik, {Brittany L.} and Brown, {Justin Lee}",
year = "2018",
month = "4",
day = "1",
doi = "10.1007/s10439-018-1985-y",
language = "English (US)",
volume = "46",
pages = "640--654",
journal = "Annals of Biomedical Engineering",
issn = "0090-6964",
publisher = "Springer Netherlands",
number = "4",

}

Mesenchymal Stem Cell Deformability and Implications for Microvascular Sequestration. / Lipowsky, Herbert H.; Bowers, Daniel T.; Banik, Brittany L.; Brown, Justin Lee.

In: Annals of Biomedical Engineering, Vol. 46, No. 4, 01.04.2018, p. 640-654.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Mesenchymal Stem Cell Deformability and Implications for Microvascular Sequestration

AU - Lipowsky, Herbert H.

AU - Bowers, Daniel T.

AU - Banik, Brittany L.

AU - Brown, Justin Lee

PY - 2018/4/1

Y1 - 2018/4/1

N2 - Mesenchymal stem cells (MSCs) have received considerable attention in regenerative medicine, particularly in light of prospects for targeted delivery by intra-arterial injection. However, little is known about the mechanics of MSC sequestration in the microvasculature and the yield pressure (PY), above which MSCs will pass through microvessels of a given diameter. The objectives of the current study were to delineate the dependency of PY on cell size and the heterogeneity of cell mechanical properties and diameters (DCELL) of cultured MSCs. To this end the transient filtration test was employed to elucidate the mean filtration pressure (〈PY〉) for an ensemble of pores of a given size (DPORE) similar to in vivo microvessels. Cultured MSCs had a log-normal distribution of cell diameters (DCELL) with a mean of 15.8 ± 0.73 SD μm. MSC clearance from track-etched polycarbonate filters was studied for pore diameters of 7.3–15.4 μm. The pressure required to clear cells from filters with 30–85 × 103 pores rose exponentially with the ratio λ = DCELL/DPORE for 1.1 ≤ λ ≤ 2.2. The clearance of cells from each filter was characterized by a log-normal distribution in PY, with a mean filtration pressure of 0.02 ≤ 〈PY〉 ≤ 6.7 cmH2O. For λ ≤ 1.56, the yield pressure (PY) was well represented by the cortical shell model of a cell with a viscous interior encapsulated by a shell under cortical tension τ0 = 0.99 ± 0.42 SD dyn/cm. For λ > 1.56, the 〈PY〉 characteristic of the cell population rose exponentially with λ. Analysis of the mean filtration pressure (〈PY〉) of each sample suggested that the larger diameter cells that skewed the distribution of DCELL contributed to about 20% of the mean filtration pressure. Further, if all cells had the same deformability (i.e., PY as a function of λ) as the average cell population, then 〈PY〉 would have risen an order of magnitude above the average from fivefold at λ = 1.56 to 200-fold at λ = 2.1. Comparison of 〈PY〉 to published microvascular pressures suggested that 〈PY〉 may exceed microvessel pressure drops for λ exceeding 2.1, and rise 14-fold above capillary pressure drop at λ = 3 leading to 100% sequestration. However, due to the large variance of in vivo microvascular pressures entrapment of MSCs may be mitigated. Thus it is suggested that selecting fractions of the MSC population according to cell deformability may permit optimization of entrapment at sites targeted for tissue regeneration.

AB - Mesenchymal stem cells (MSCs) have received considerable attention in regenerative medicine, particularly in light of prospects for targeted delivery by intra-arterial injection. However, little is known about the mechanics of MSC sequestration in the microvasculature and the yield pressure (PY), above which MSCs will pass through microvessels of a given diameter. The objectives of the current study were to delineate the dependency of PY on cell size and the heterogeneity of cell mechanical properties and diameters (DCELL) of cultured MSCs. To this end the transient filtration test was employed to elucidate the mean filtration pressure (〈PY〉) for an ensemble of pores of a given size (DPORE) similar to in vivo microvessels. Cultured MSCs had a log-normal distribution of cell diameters (DCELL) with a mean of 15.8 ± 0.73 SD μm. MSC clearance from track-etched polycarbonate filters was studied for pore diameters of 7.3–15.4 μm. The pressure required to clear cells from filters with 30–85 × 103 pores rose exponentially with the ratio λ = DCELL/DPORE for 1.1 ≤ λ ≤ 2.2. The clearance of cells from each filter was characterized by a log-normal distribution in PY, with a mean filtration pressure of 0.02 ≤ 〈PY〉 ≤ 6.7 cmH2O. For λ ≤ 1.56, the yield pressure (PY) was well represented by the cortical shell model of a cell with a viscous interior encapsulated by a shell under cortical tension τ0 = 0.99 ± 0.42 SD dyn/cm. For λ > 1.56, the 〈PY〉 characteristic of the cell population rose exponentially with λ. Analysis of the mean filtration pressure (〈PY〉) of each sample suggested that the larger diameter cells that skewed the distribution of DCELL contributed to about 20% of the mean filtration pressure. Further, if all cells had the same deformability (i.e., PY as a function of λ) as the average cell population, then 〈PY〉 would have risen an order of magnitude above the average from fivefold at λ = 1.56 to 200-fold at λ = 2.1. Comparison of 〈PY〉 to published microvascular pressures suggested that 〈PY〉 may exceed microvessel pressure drops for λ exceeding 2.1, and rise 14-fold above capillary pressure drop at λ = 3 leading to 100% sequestration. However, due to the large variance of in vivo microvascular pressures entrapment of MSCs may be mitigated. Thus it is suggested that selecting fractions of the MSC population according to cell deformability may permit optimization of entrapment at sites targeted for tissue regeneration.

UR - http://www.scopus.com/inward/record.url?scp=85040704416&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85040704416&partnerID=8YFLogxK

U2 - 10.1007/s10439-018-1985-y

DO - 10.1007/s10439-018-1985-y

M3 - Article

C2 - 29352448

AN - SCOPUS:85040704416

VL - 46

SP - 640

EP - 654

JO - Annals of Biomedical Engineering

JF - Annals of Biomedical Engineering

SN - 0090-6964

IS - 4

ER -