Metabolism of rifabutin and its 25-desacetyl metabolite, LM565, by human liver microsomes and recombinant human cytochrome P-450 3A4: Relevance to clinical interaction with fluconazole

Carol Braun Trapnell, Carlos Jamis-Dow, Raymond W. Klecker, Jerry M. Collins

Research output: Contribution to journalArticle

25 Scopus citations


Rifabutin and fluconazole are often given concomitantly as therapy to prevent opportunistic infections in individuals infected with the human immunodeficiency virus. Recent reports have shown increased levels of rifabutin and its 25-desacetyl metabolite, LM565, in plasma when rifabutin is administered with fluconazole. Since fluconazole is known to inhibit microsomal enzymes, this study was undertaken to determine if this rifabutin-fluconazole interaction was due to an inhibition of human hepatic enzymes. The metabolism of both rifabutin and LM565 was evaluated in human liver microsomes and recombinant human cytochrome P-450 (CYP) 3A4 in the presence of fluconazole and other probe drugs known to inhibit CYP groups 1A2, 2C9, 2D6, 2E1, and 3A. The concentrations of rifabutin (1 μg/ml), LM565 (1 μg/ml), and fluconazole (10 and 100 μg/ml) used were equal to those observed in plasma after the administration of rifabutin and fluconazole at clinically relevant doses. High-performance liquid chromatography was used to assess the metabolism of rifabutin and LM565. Rifabutin was readily metabolized to LM565 by human microsomes, but the reaction was independent of NADPH and was not affected by the P-450 inhibitors. No rifabutin metabolism by recombinant CYP 3A4 was found to occur. LM565 was also metabolized by human microsomes to two products, but metabolism was dependent on NADPH and was affected by certain P-450 inhibitors. In addition, LM565 was readily metabolized by the recombinant CYP 3A4 to the same two products found with its metabolism by human microsomes. Therefore, rifabutin is metabolized by human microsomes but not via cytochrome P-450 enzymes, whereas LM565 is metabolized by CYP 3A4.

Original languageEnglish (US)
Pages (from-to)924-926
Number of pages3
JournalAntimicrobial agents and chemotherapy
Issue number5
Publication statusPublished - May 1 1997


All Science Journal Classification (ASJC) codes

  • Pharmacology
  • Pharmacology (medical)
  • Infectious Diseases

Cite this