Metal binding motif in the active site of the HDV ribozyme binds divalent and monovalent ions

Narayanan Veeraraghavan, Abir Ganguly, Jui Hui Chen, Philip C. Bevilacqua, Sharon Hammes-Schiffer, Barbara L. Golden

Research output: Contribution to journalArticle

48 Scopus citations

Abstract

The hepatitis delta virus (HDV) ribozyme uses both metal ion and nucleobase catalysis in its cleavage mechanism. A reverse G•U wobble was observed in a recent crystal structure of the precleaved state. This unusual base pair positions a Mg2+ ion to participate in catalysis. Herein, we used molecular dynamics (MD) and X-ray crystallography to characterize the conformation and metal binding characteristics of this base pair in product and precleaved forms. Beginning with a crystal structure of the product form, we observed formation of the reverse G•U wobble during MD trajectories. We also demonstrated that this base pair is compatible with the diffraction data for the product-bound state. During MD trajectories of the product form, Na + ions interacted with the reverse G•U wobble in the RNA active site, and a Mg2+ ion, introduced in certain trajectories, remained bound at this site. Beginning with a crystal structure of the precleaved form, the reverse G•U wobble with bound Mg2+ remained intact during MD simulations. When we removed Mg2+ from the starting precleaved structure, Na+ ions interacted with the reverse G•U wobble. In support of the computational results, we observed competition between Na + and Mg2+ in the precleaved ribozyme crystallographically. Nonlinear Poisson-Boltzmann calculations revealed a negatively charged patch near the reverse G•U wobble. This anionic pocket likely serves to bind metal ions and to help shift the pKa of the catalytic nucleobase, C75. Thus, the reverse G•U wobble motif serves to organize two catalytic elements, a metal ion and catalytic nucleobase, within the active site of the HDV ribozyme.

Original languageEnglish (US)
Pages (from-to)2672-2682
Number of pages11
JournalBiochemistry
Volume50
Issue number13
DOIs
StatePublished - Apr 5 2011

All Science Journal Classification (ASJC) codes

  • Biochemistry

Fingerprint Dive into the research topics of 'Metal binding motif in the active site of the HDV ribozyme binds divalent and monovalent ions'. Together they form a unique fingerprint.

  • Cite this

    Veeraraghavan, N., Ganguly, A., Chen, J. H., Bevilacqua, P. C., Hammes-Schiffer, S., & Golden, B. L. (2011). Metal binding motif in the active site of the HDV ribozyme binds divalent and monovalent ions. Biochemistry, 50(13), 2672-2682. https://doi.org/10.1021/bi2000164