Methods for Handling Missing Secondary Respondent Data

Rebekah Young, David Johnson

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

Secondary respondent data are underutilized because researchers avoid using these data in the presence of substantial missing data. The authors reviewed, evaluated, and tested solutions to this problem. Five strategies of dealing with missing partner data were reviewed: (a) complete case analysis, (b) inverse probability weighting, (c) correction with a Heckman selection model, (d) maximum likelihood estimation, and (e) multiple imputation. Two approaches were used to evaluate the performance of these methods. First, the authors used data from the National Survey of Fertility Barriers (n = 1,666) to estimate a model predicting marital quality based on characteristics of women and their husbands. Second, they conducted a simulation testing the 5 methods and compared the results to estimates where the true value was known. They found that the maximum likelihood and multiple imputation methods were advantageous because they allow researchers to utilize all of the available information as well as produce less biased and more efficient estimates.

Original languageEnglish (US)
Pages (from-to)221-234
Number of pages14
JournalJournal of Marriage and Family
Volume75
Issue number1
DOIs
StatePublished - Feb 2013

All Science Journal Classification (ASJC) codes

  • Anthropology
  • Arts and Humanities (miscellaneous)
  • Social Sciences (miscellaneous)

Fingerprint

Dive into the research topics of 'Methods for Handling Missing Secondary Respondent Data'. Together they form a unique fingerprint.

Cite this