Micro-surfacing mixtures with reclaimed asphalt pavement: Mix design and performance evaluation

Anping Wang, Shihui Shen, Xinghai Li, Bo Song

Research output: Contribution to journalArticle

Abstract

Micro-surfacing is used as a pavement preservation and maintenance technique to improve surface skid resistance, abrasion resistance, water resistance, and durability. Recently, reclaimed asphalt pavement (RAP) has been used in micro-surfacing mixtures with good promise and improved sustainability. The use of RAP helps reduce greenhouse gas emissions during the production of new asphalt pavement materials and enhance the environmental sustainability of the overall transportation infrastructure. However, exploring how to reasonably use RAP in micro-surfacing while also considering its unique yet complicate asphalt-emulsion-water-cement-aggregate system is still worth further investigation. The objective of this study is to propose a modified mix design and material evaluation approach for RAP micro-surfacing mixtures so that its performance, especially as rut filling materials, can be satisfied for field application. In this paper, the optimum asphalt content (OAC) of RAP micro-surfacing mixtures was determined according to the optimized rutting resistance. Rejuvenators were incorporated to evaluate their effectiveness on RAP micro-surfacing mixtures. Laboratory compaction was proposed in the mix design stage to simulate the rolling in the field. Furthermore, to support the design concept and to verify the mix designs for acceptable engineering properties, several performance tests were used to evaluate the mixing condition, moisture susceptibility, shear resistance, and skid resistance of RAP micro-surfacing mixtures. The results showed that the OAC decreased with the increase of the RAP content. The rejuvenators restored the initial characteristics of RAP binder in micro-surfacing and improved its mixing time and rutting resistance. Laboratory compaction could accelerate the curing and improve the consistency and rutting resistance of the mixtures. Adding RAP could improve the mixing time but there was an optimum RAP content. With the increase of RAP content, the moisture and skid resistance of micro-surfacing were improved. RAP usage had no consistent impact on the interlayer shear strength between micro-surfacing and its substrate structure. Overall, with appropriate application, high content RAP can be added to micro-surfacing with both environmental and engineering benefit.

Original languageEnglish (US)
Pages (from-to)303-313
Number of pages11
JournalConstruction and Building Materials
Volume201
DOIs
StatePublished - Mar 20 2019

Fingerprint

Hard facing
Asphalt pavements
asphalt
Skid resistance
Asphalt
Sustainable development
Compaction
Moisture
Water
Emulsions
Gas emissions
Greenhouse gases
Pavements
Shear strength

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Building and Construction
  • Materials Science(all)

Cite this

@article{242785d1908e4c838f05d68bfe285827,
title = "Micro-surfacing mixtures with reclaimed asphalt pavement: Mix design and performance evaluation",
abstract = "Micro-surfacing is used as a pavement preservation and maintenance technique to improve surface skid resistance, abrasion resistance, water resistance, and durability. Recently, reclaimed asphalt pavement (RAP) has been used in micro-surfacing mixtures with good promise and improved sustainability. The use of RAP helps reduce greenhouse gas emissions during the production of new asphalt pavement materials and enhance the environmental sustainability of the overall transportation infrastructure. However, exploring how to reasonably use RAP in micro-surfacing while also considering its unique yet complicate asphalt-emulsion-water-cement-aggregate system is still worth further investigation. The objective of this study is to propose a modified mix design and material evaluation approach for RAP micro-surfacing mixtures so that its performance, especially as rut filling materials, can be satisfied for field application. In this paper, the optimum asphalt content (OAC) of RAP micro-surfacing mixtures was determined according to the optimized rutting resistance. Rejuvenators were incorporated to evaluate their effectiveness on RAP micro-surfacing mixtures. Laboratory compaction was proposed in the mix design stage to simulate the rolling in the field. Furthermore, to support the design concept and to verify the mix designs for acceptable engineering properties, several performance tests were used to evaluate the mixing condition, moisture susceptibility, shear resistance, and skid resistance of RAP micro-surfacing mixtures. The results showed that the OAC decreased with the increase of the RAP content. The rejuvenators restored the initial characteristics of RAP binder in micro-surfacing and improved its mixing time and rutting resistance. Laboratory compaction could accelerate the curing and improve the consistency and rutting resistance of the mixtures. Adding RAP could improve the mixing time but there was an optimum RAP content. With the increase of RAP content, the moisture and skid resistance of micro-surfacing were improved. RAP usage had no consistent impact on the interlayer shear strength between micro-surfacing and its substrate structure. Overall, with appropriate application, high content RAP can be added to micro-surfacing with both environmental and engineering benefit.",
author = "Anping Wang and Shihui Shen and Xinghai Li and Bo Song",
year = "2019",
month = "3",
day = "20",
doi = "10.1016/j.conbuildmat.2018.12.164",
language = "English (US)",
volume = "201",
pages = "303--313",
journal = "Construction and Building Materials",
issn = "0950-0618",
publisher = "Elsevier Limited",

}

Micro-surfacing mixtures with reclaimed asphalt pavement : Mix design and performance evaluation. / Wang, Anping; Shen, Shihui; Li, Xinghai; Song, Bo.

In: Construction and Building Materials, Vol. 201, 20.03.2019, p. 303-313.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Micro-surfacing mixtures with reclaimed asphalt pavement

T2 - Mix design and performance evaluation

AU - Wang, Anping

AU - Shen, Shihui

AU - Li, Xinghai

AU - Song, Bo

PY - 2019/3/20

Y1 - 2019/3/20

N2 - Micro-surfacing is used as a pavement preservation and maintenance technique to improve surface skid resistance, abrasion resistance, water resistance, and durability. Recently, reclaimed asphalt pavement (RAP) has been used in micro-surfacing mixtures with good promise and improved sustainability. The use of RAP helps reduce greenhouse gas emissions during the production of new asphalt pavement materials and enhance the environmental sustainability of the overall transportation infrastructure. However, exploring how to reasonably use RAP in micro-surfacing while also considering its unique yet complicate asphalt-emulsion-water-cement-aggregate system is still worth further investigation. The objective of this study is to propose a modified mix design and material evaluation approach for RAP micro-surfacing mixtures so that its performance, especially as rut filling materials, can be satisfied for field application. In this paper, the optimum asphalt content (OAC) of RAP micro-surfacing mixtures was determined according to the optimized rutting resistance. Rejuvenators were incorporated to evaluate their effectiveness on RAP micro-surfacing mixtures. Laboratory compaction was proposed in the mix design stage to simulate the rolling in the field. Furthermore, to support the design concept and to verify the mix designs for acceptable engineering properties, several performance tests were used to evaluate the mixing condition, moisture susceptibility, shear resistance, and skid resistance of RAP micro-surfacing mixtures. The results showed that the OAC decreased with the increase of the RAP content. The rejuvenators restored the initial characteristics of RAP binder in micro-surfacing and improved its mixing time and rutting resistance. Laboratory compaction could accelerate the curing and improve the consistency and rutting resistance of the mixtures. Adding RAP could improve the mixing time but there was an optimum RAP content. With the increase of RAP content, the moisture and skid resistance of micro-surfacing were improved. RAP usage had no consistent impact on the interlayer shear strength between micro-surfacing and its substrate structure. Overall, with appropriate application, high content RAP can be added to micro-surfacing with both environmental and engineering benefit.

AB - Micro-surfacing is used as a pavement preservation and maintenance technique to improve surface skid resistance, abrasion resistance, water resistance, and durability. Recently, reclaimed asphalt pavement (RAP) has been used in micro-surfacing mixtures with good promise and improved sustainability. The use of RAP helps reduce greenhouse gas emissions during the production of new asphalt pavement materials and enhance the environmental sustainability of the overall transportation infrastructure. However, exploring how to reasonably use RAP in micro-surfacing while also considering its unique yet complicate asphalt-emulsion-water-cement-aggregate system is still worth further investigation. The objective of this study is to propose a modified mix design and material evaluation approach for RAP micro-surfacing mixtures so that its performance, especially as rut filling materials, can be satisfied for field application. In this paper, the optimum asphalt content (OAC) of RAP micro-surfacing mixtures was determined according to the optimized rutting resistance. Rejuvenators were incorporated to evaluate their effectiveness on RAP micro-surfacing mixtures. Laboratory compaction was proposed in the mix design stage to simulate the rolling in the field. Furthermore, to support the design concept and to verify the mix designs for acceptable engineering properties, several performance tests were used to evaluate the mixing condition, moisture susceptibility, shear resistance, and skid resistance of RAP micro-surfacing mixtures. The results showed that the OAC decreased with the increase of the RAP content. The rejuvenators restored the initial characteristics of RAP binder in micro-surfacing and improved its mixing time and rutting resistance. Laboratory compaction could accelerate the curing and improve the consistency and rutting resistance of the mixtures. Adding RAP could improve the mixing time but there was an optimum RAP content. With the increase of RAP content, the moisture and skid resistance of micro-surfacing were improved. RAP usage had no consistent impact on the interlayer shear strength between micro-surfacing and its substrate structure. Overall, with appropriate application, high content RAP can be added to micro-surfacing with both environmental and engineering benefit.

UR - http://www.scopus.com/inward/record.url?scp=85059345166&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85059345166&partnerID=8YFLogxK

U2 - 10.1016/j.conbuildmat.2018.12.164

DO - 10.1016/j.conbuildmat.2018.12.164

M3 - Article

AN - SCOPUS:85059345166

VL - 201

SP - 303

EP - 313

JO - Construction and Building Materials

JF - Construction and Building Materials

SN - 0950-0618

ER -