Microbial reduction of iron(III)-rich nontronite and uranium(VI)

Gengxin Zhang, John M. Senko, Shelly D. Kelly, Hui Tan, Kenneth M. Kemner, William D. Burgos

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

To assess the dynamics of microbially mediated U-clay redox reactions, we examined the reduction of iron(III)-rich nontronite NAu-2 and uranium(VI) by Shewanella oneidensis MR-1. Bioreduction experiments were conducted with combinations and varied concentrations of MR-1, nontronite, U(VI) and the electron shuttle anthraquinone-2,6-disulfonate (AQDS). Abiotic experiments were conducted to quantify U(VI) sorption to NAu-2, the reduction of U(VI) by chemically-reduced nontronite-Fe(II), and the oxidation of uraninite, U(IV)O2(s), by nontronite-Fe(III). When we incubated S. oneidensis MR-1 at lower concentration (0.5 × 108 cell mL-1) with nontronite (5.0 g L-1) and U(VI) (1.0 mM), little U(VI) reduction occurred compared to nontronite-free incubations, despite the production of abundant Fe(II). The addition of AQDS to U(VI)- and nontronite-containing incubations enhanced both U(VI) and nontronite-Fe(III) reduction. While U(VI) was completely reduced by S. oneidensis MR-1 at higher concentration (1.0 × 108 cell mL-1) in the presence of nontronite, increasing concentrations of nontronite led to progressively slower rates of U(VI) reduction. U(VI) enhanced nontronite-Fe(III) reduction and uraninite was oxidized by nontronite-Fe(III), demonstrating that U served as an effective electron shuttle from S. oneidensis MR-1 to nontronite-Fe(III). The electron-shuttling activity of U can explain the lack or delay of U(VI) reduction observed in the bulk solution. Little U(VI) reduction was observed in incubations that contained chemically-reduced nontronite-Fe(II), suggesting that biologic U(VI) reduction drove U valence cycling in these systems. Under the conditions used in these experiments, we demonstrate that iron-rich smectite may inhibit or delay U(VI) bioreduction.

Original languageEnglish (US)
Pages (from-to)3523-3538
Number of pages16
JournalGeochimica et Cosmochimica Acta
Volume73
Issue number12
DOIs
StatePublished - Jun 15 2009

Fingerprint

nontronite
Uranium
uranium
Iron
iron
Electrons
uraninite
incubation
electron
Redox reactions
Experiments
Sorption
experiment
Oxidation
smectite

All Science Journal Classification (ASJC) codes

  • Geochemistry and Petrology

Cite this

Zhang, Gengxin ; Senko, John M. ; Kelly, Shelly D. ; Tan, Hui ; Kemner, Kenneth M. ; Burgos, William D. / Microbial reduction of iron(III)-rich nontronite and uranium(VI). In: Geochimica et Cosmochimica Acta. 2009 ; Vol. 73, No. 12. pp. 3523-3538.
@article{2709d2aae33341cbaa2c2845fa91ab76,
title = "Microbial reduction of iron(III)-rich nontronite and uranium(VI)",
abstract = "To assess the dynamics of microbially mediated U-clay redox reactions, we examined the reduction of iron(III)-rich nontronite NAu-2 and uranium(VI) by Shewanella oneidensis MR-1. Bioreduction experiments were conducted with combinations and varied concentrations of MR-1, nontronite, U(VI) and the electron shuttle anthraquinone-2,6-disulfonate (AQDS). Abiotic experiments were conducted to quantify U(VI) sorption to NAu-2, the reduction of U(VI) by chemically-reduced nontronite-Fe(II), and the oxidation of uraninite, U(IV)O2(s), by nontronite-Fe(III). When we incubated S. oneidensis MR-1 at lower concentration (0.5 × 108 cell mL-1) with nontronite (5.0 g L-1) and U(VI) (1.0 mM), little U(VI) reduction occurred compared to nontronite-free incubations, despite the production of abundant Fe(II). The addition of AQDS to U(VI)- and nontronite-containing incubations enhanced both U(VI) and nontronite-Fe(III) reduction. While U(VI) was completely reduced by S. oneidensis MR-1 at higher concentration (1.0 × 108 cell mL-1) in the presence of nontronite, increasing concentrations of nontronite led to progressively slower rates of U(VI) reduction. U(VI) enhanced nontronite-Fe(III) reduction and uraninite was oxidized by nontronite-Fe(III), demonstrating that U served as an effective electron shuttle from S. oneidensis MR-1 to nontronite-Fe(III). The electron-shuttling activity of U can explain the lack or delay of U(VI) reduction observed in the bulk solution. Little U(VI) reduction was observed in incubations that contained chemically-reduced nontronite-Fe(II), suggesting that biologic U(VI) reduction drove U valence cycling in these systems. Under the conditions used in these experiments, we demonstrate that iron-rich smectite may inhibit or delay U(VI) bioreduction.",
author = "Gengxin Zhang and Senko, {John M.} and Kelly, {Shelly D.} and Hui Tan and Kemner, {Kenneth M.} and Burgos, {William D.}",
year = "2009",
month = "6",
day = "15",
doi = "10.1016/j.gca.2009.03.030",
language = "English (US)",
volume = "73",
pages = "3523--3538",
journal = "Geochmica et Cosmochimica Acta",
issn = "0016-7037",
publisher = "Elsevier Limited",
number = "12",

}

Microbial reduction of iron(III)-rich nontronite and uranium(VI). / Zhang, Gengxin; Senko, John M.; Kelly, Shelly D.; Tan, Hui; Kemner, Kenneth M.; Burgos, William D.

In: Geochimica et Cosmochimica Acta, Vol. 73, No. 12, 15.06.2009, p. 3523-3538.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Microbial reduction of iron(III)-rich nontronite and uranium(VI)

AU - Zhang, Gengxin

AU - Senko, John M.

AU - Kelly, Shelly D.

AU - Tan, Hui

AU - Kemner, Kenneth M.

AU - Burgos, William D.

PY - 2009/6/15

Y1 - 2009/6/15

N2 - To assess the dynamics of microbially mediated U-clay redox reactions, we examined the reduction of iron(III)-rich nontronite NAu-2 and uranium(VI) by Shewanella oneidensis MR-1. Bioreduction experiments were conducted with combinations and varied concentrations of MR-1, nontronite, U(VI) and the electron shuttle anthraquinone-2,6-disulfonate (AQDS). Abiotic experiments were conducted to quantify U(VI) sorption to NAu-2, the reduction of U(VI) by chemically-reduced nontronite-Fe(II), and the oxidation of uraninite, U(IV)O2(s), by nontronite-Fe(III). When we incubated S. oneidensis MR-1 at lower concentration (0.5 × 108 cell mL-1) with nontronite (5.0 g L-1) and U(VI) (1.0 mM), little U(VI) reduction occurred compared to nontronite-free incubations, despite the production of abundant Fe(II). The addition of AQDS to U(VI)- and nontronite-containing incubations enhanced both U(VI) and nontronite-Fe(III) reduction. While U(VI) was completely reduced by S. oneidensis MR-1 at higher concentration (1.0 × 108 cell mL-1) in the presence of nontronite, increasing concentrations of nontronite led to progressively slower rates of U(VI) reduction. U(VI) enhanced nontronite-Fe(III) reduction and uraninite was oxidized by nontronite-Fe(III), demonstrating that U served as an effective electron shuttle from S. oneidensis MR-1 to nontronite-Fe(III). The electron-shuttling activity of U can explain the lack or delay of U(VI) reduction observed in the bulk solution. Little U(VI) reduction was observed in incubations that contained chemically-reduced nontronite-Fe(II), suggesting that biologic U(VI) reduction drove U valence cycling in these systems. Under the conditions used in these experiments, we demonstrate that iron-rich smectite may inhibit or delay U(VI) bioreduction.

AB - To assess the dynamics of microbially mediated U-clay redox reactions, we examined the reduction of iron(III)-rich nontronite NAu-2 and uranium(VI) by Shewanella oneidensis MR-1. Bioreduction experiments were conducted with combinations and varied concentrations of MR-1, nontronite, U(VI) and the electron shuttle anthraquinone-2,6-disulfonate (AQDS). Abiotic experiments were conducted to quantify U(VI) sorption to NAu-2, the reduction of U(VI) by chemically-reduced nontronite-Fe(II), and the oxidation of uraninite, U(IV)O2(s), by nontronite-Fe(III). When we incubated S. oneidensis MR-1 at lower concentration (0.5 × 108 cell mL-1) with nontronite (5.0 g L-1) and U(VI) (1.0 mM), little U(VI) reduction occurred compared to nontronite-free incubations, despite the production of abundant Fe(II). The addition of AQDS to U(VI)- and nontronite-containing incubations enhanced both U(VI) and nontronite-Fe(III) reduction. While U(VI) was completely reduced by S. oneidensis MR-1 at higher concentration (1.0 × 108 cell mL-1) in the presence of nontronite, increasing concentrations of nontronite led to progressively slower rates of U(VI) reduction. U(VI) enhanced nontronite-Fe(III) reduction and uraninite was oxidized by nontronite-Fe(III), demonstrating that U served as an effective electron shuttle from S. oneidensis MR-1 to nontronite-Fe(III). The electron-shuttling activity of U can explain the lack or delay of U(VI) reduction observed in the bulk solution. Little U(VI) reduction was observed in incubations that contained chemically-reduced nontronite-Fe(II), suggesting that biologic U(VI) reduction drove U valence cycling in these systems. Under the conditions used in these experiments, we demonstrate that iron-rich smectite may inhibit or delay U(VI) bioreduction.

UR - http://www.scopus.com/inward/record.url?scp=65549115351&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=65549115351&partnerID=8YFLogxK

U2 - 10.1016/j.gca.2009.03.030

DO - 10.1016/j.gca.2009.03.030

M3 - Article

VL - 73

SP - 3523

EP - 3538

JO - Geochmica et Cosmochimica Acta

JF - Geochmica et Cosmochimica Acta

SN - 0016-7037

IS - 12

ER -