Microlensing events by proxima centauri in 2014 and 2016

Opportunities for mass determination and possible planet detection

Kailash C. Sahu, Howard E. Bond, Jay Anderson, Martin Dominik

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

We have found that Proxima Centauri, the star closest to our Sun, will pass close to a pair of faint background stars in the next few years. Using Hubble Space Telescope (HST) images obtained in 2012 October, we determine that the passage close to a mag 20 star will occur in 2014 October (impact parameter 1.″6), and to a mag 19.5 star in 2016 February (impact parameter 0.″5). As Proxima passes in front of these stars, the relativistic deflection of light will cause shifts in the positions of the background stars of 0.5 and 1.5 mas, respectively, readily detectable by HST imaging, and possibly by Gaia and ground-based facilities such as the Very Large Telescope. Measurement of these astrometric shifts offers a unique and direct method to measure the mass of Proxima. Moreover, if Proxima has a planetary system, the planets may be detectable through their additional microlensing signals, although the probability of such detections is small. With astrometric accuracies of 0.03 mas (achievable with HST spatial scanning), centroid shifts caused by Jovian planets are detectable at separations of up to 2.″0 (corresponding to 2.6 AU at the distance of Proxima), and centroid shifts by Earth-mass planets are detectable within a small band of 8 mas (corresponding to 0.01 AU) around the source trajectories. Jovian planets within a band of about 28 mas (corresponding to 0.036 AU) around the source trajectories would produce a brightening of the source by >0.01 mag and could hence be detectable. Estimated timescales of the astrometric and photometric microlensing events due to a planet range from a few hours to a few days, and both methods would provide direct measurements of the planetary mass.

Original languageEnglish (US)
Article number89
JournalAstrophysical Journal
Volume782
Issue number2
DOIs
StatePublished - Feb 20 2014

Fingerprint

planet detection
planet
planets
stars
Hubble Space Telescope
shift
centroids
trajectory
trajectories
planetary mass
planetary systems
deflection
detection
sun
timescale
telescopes
scanning
causes

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

@article{82ba2d1721fe4d5f9bba914d9ce262dc,
title = "Microlensing events by proxima centauri in 2014 and 2016: Opportunities for mass determination and possible planet detection",
abstract = "We have found that Proxima Centauri, the star closest to our Sun, will pass close to a pair of faint background stars in the next few years. Using Hubble Space Telescope (HST) images obtained in 2012 October, we determine that the passage close to a mag 20 star will occur in 2014 October (impact parameter 1.″6), and to a mag 19.5 star in 2016 February (impact parameter 0.″5). As Proxima passes in front of these stars, the relativistic deflection of light will cause shifts in the positions of the background stars of 0.5 and 1.5 mas, respectively, readily detectable by HST imaging, and possibly by Gaia and ground-based facilities such as the Very Large Telescope. Measurement of these astrometric shifts offers a unique and direct method to measure the mass of Proxima. Moreover, if Proxima has a planetary system, the planets may be detectable through their additional microlensing signals, although the probability of such detections is small. With astrometric accuracies of 0.03 mas (achievable with HST spatial scanning), centroid shifts caused by Jovian planets are detectable at separations of up to 2.″0 (corresponding to 2.6 AU at the distance of Proxima), and centroid shifts by Earth-mass planets are detectable within a small band of 8 mas (corresponding to 0.01 AU) around the source trajectories. Jovian planets within a band of about 28 mas (corresponding to 0.036 AU) around the source trajectories would produce a brightening of the source by >0.01 mag and could hence be detectable. Estimated timescales of the astrometric and photometric microlensing events due to a planet range from a few hours to a few days, and both methods would provide direct measurements of the planetary mass.",
author = "Sahu, {Kailash C.} and Bond, {Howard E.} and Jay Anderson and Martin Dominik",
year = "2014",
month = "2",
day = "20",
doi = "10.1088/0004-637X/782/2/89",
language = "English (US)",
volume = "782",
journal = "Astrophysical Journal",
issn = "0004-637X",
publisher = "IOP Publishing Ltd.",
number = "2",

}

Microlensing events by proxima centauri in 2014 and 2016 : Opportunities for mass determination and possible planet detection. / Sahu, Kailash C.; Bond, Howard E.; Anderson, Jay; Dominik, Martin.

In: Astrophysical Journal, Vol. 782, No. 2, 89, 20.02.2014.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Microlensing events by proxima centauri in 2014 and 2016

T2 - Opportunities for mass determination and possible planet detection

AU - Sahu, Kailash C.

AU - Bond, Howard E.

AU - Anderson, Jay

AU - Dominik, Martin

PY - 2014/2/20

Y1 - 2014/2/20

N2 - We have found that Proxima Centauri, the star closest to our Sun, will pass close to a pair of faint background stars in the next few years. Using Hubble Space Telescope (HST) images obtained in 2012 October, we determine that the passage close to a mag 20 star will occur in 2014 October (impact parameter 1.″6), and to a mag 19.5 star in 2016 February (impact parameter 0.″5). As Proxima passes in front of these stars, the relativistic deflection of light will cause shifts in the positions of the background stars of 0.5 and 1.5 mas, respectively, readily detectable by HST imaging, and possibly by Gaia and ground-based facilities such as the Very Large Telescope. Measurement of these astrometric shifts offers a unique and direct method to measure the mass of Proxima. Moreover, if Proxima has a planetary system, the planets may be detectable through their additional microlensing signals, although the probability of such detections is small. With astrometric accuracies of 0.03 mas (achievable with HST spatial scanning), centroid shifts caused by Jovian planets are detectable at separations of up to 2.″0 (corresponding to 2.6 AU at the distance of Proxima), and centroid shifts by Earth-mass planets are detectable within a small band of 8 mas (corresponding to 0.01 AU) around the source trajectories. Jovian planets within a band of about 28 mas (corresponding to 0.036 AU) around the source trajectories would produce a brightening of the source by >0.01 mag and could hence be detectable. Estimated timescales of the astrometric and photometric microlensing events due to a planet range from a few hours to a few days, and both methods would provide direct measurements of the planetary mass.

AB - We have found that Proxima Centauri, the star closest to our Sun, will pass close to a pair of faint background stars in the next few years. Using Hubble Space Telescope (HST) images obtained in 2012 October, we determine that the passage close to a mag 20 star will occur in 2014 October (impact parameter 1.″6), and to a mag 19.5 star in 2016 February (impact parameter 0.″5). As Proxima passes in front of these stars, the relativistic deflection of light will cause shifts in the positions of the background stars of 0.5 and 1.5 mas, respectively, readily detectable by HST imaging, and possibly by Gaia and ground-based facilities such as the Very Large Telescope. Measurement of these astrometric shifts offers a unique and direct method to measure the mass of Proxima. Moreover, if Proxima has a planetary system, the planets may be detectable through their additional microlensing signals, although the probability of such detections is small. With astrometric accuracies of 0.03 mas (achievable with HST spatial scanning), centroid shifts caused by Jovian planets are detectable at separations of up to 2.″0 (corresponding to 2.6 AU at the distance of Proxima), and centroid shifts by Earth-mass planets are detectable within a small band of 8 mas (corresponding to 0.01 AU) around the source trajectories. Jovian planets within a band of about 28 mas (corresponding to 0.036 AU) around the source trajectories would produce a brightening of the source by >0.01 mag and could hence be detectable. Estimated timescales of the astrometric and photometric microlensing events due to a planet range from a few hours to a few days, and both methods would provide direct measurements of the planetary mass.

UR - http://www.scopus.com/inward/record.url?scp=84893537968&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84893537968&partnerID=8YFLogxK

U2 - 10.1088/0004-637X/782/2/89

DO - 10.1088/0004-637X/782/2/89

M3 - Article

VL - 782

JO - Astrophysical Journal

JF - Astrophysical Journal

SN - 0004-637X

IS - 2

M1 - 89

ER -