TY - JOUR
T1 - MicroRNA in ovarian function
AU - Maalouf, S. W.
AU - Liu, W. S.
AU - Pate, J. L.
N1 - Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - The mammalian ovary is a dynamic organ. The coordination of follicle recruitment, selection, and ovulation and the timely development and regression of the corpus luteum are essential for a functional ovary and fertility. Deregulation of any of these processes results in ovarian dysfunction and potential infertility. MicroRNA (miRNA) are short noncoding RNA that regulate developmental processes and time-sensitive functions. The expression of miRNA in the ovary varies with cell type, function, and stage of the estrous cycle. miRNA are involved in the formation of primordial follicles, follicular recruitment and selection, follicular atresia, oocyte-cumulus cell interaction, granulosal cell function, and luteinization. miRNA are differentially expressed in luteal cells at the various stages of the estrous cycle and during maternal recognition of pregnancy, suggesting a role in luteal development, maintenance, and regression. An understanding of the patterns of expression and functions of miRNA in the ovary will lead to novel therapeutics to treat ovarian dysfunction and improve fertility and, potentially, to the development of better contraceptives.
AB - The mammalian ovary is a dynamic organ. The coordination of follicle recruitment, selection, and ovulation and the timely development and regression of the corpus luteum are essential for a functional ovary and fertility. Deregulation of any of these processes results in ovarian dysfunction and potential infertility. MicroRNA (miRNA) are short noncoding RNA that regulate developmental processes and time-sensitive functions. The expression of miRNA in the ovary varies with cell type, function, and stage of the estrous cycle. miRNA are involved in the formation of primordial follicles, follicular recruitment and selection, follicular atresia, oocyte-cumulus cell interaction, granulosal cell function, and luteinization. miRNA are differentially expressed in luteal cells at the various stages of the estrous cycle and during maternal recognition of pregnancy, suggesting a role in luteal development, maintenance, and regression. An understanding of the patterns of expression and functions of miRNA in the ovary will lead to novel therapeutics to treat ovarian dysfunction and improve fertility and, potentially, to the development of better contraceptives.
UR - http://www.scopus.com/inward/record.url?scp=84952981448&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84952981448&partnerID=8YFLogxK
U2 - 10.1007/s00441-015-2307-4
DO - 10.1007/s00441-015-2307-4
M3 - Review article
C2 - 26558383
AN - SCOPUS:84952981448
VL - 363
SP - 7
EP - 18
JO - Zeitschrift für Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948)
JF - Zeitschrift für Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948)
SN - 0302-766X
IS - 1
ER -