@article{2d9e4730d86249118189297271588de6,
title = "Microsatellite abundance across the Anthozoa and Hydrozoa in the phylum Cnidaria",
abstract = "Background: Microsatellite loci have high mutation rates and thus are indicative of mutational processes within the genome. By concentrating on the symbiotic and aposymbiotic cnidarians, we investigated if microsatellite abundances follow a phylogenetic or ecological pattern. Individuals from eight species were shotgun sequenced using 454 GS-FLX Titanium technology. Sequences from the three available cnidarian genomes (Nematostella vectensis, Hydra magnipapillata and Acropora digitifera) were added to the analysis for a total of eleven species representing two classes, three subclasses and eight orders within the phylum Cnidaria. Results: Trinucleotide and tetranucleotide repeats were the most abundant motifs, followed by hexa- and dinucleotides. Pentanucleotides were the least abundant motif in the data set. Hierarchical clustering and log likelihood ratio tests revealed a weak relationship between phylogeny and microsatellite content. Further, comparisons between cnidaria harboring intracellular dinoflagellates and those that do not, show microsatellite coverage is higher in the latter group. Conclusions: Our results support previous studies that found tri- and tetranucleotides to be the most abundant motifs in invertebrates. Differences in microsatellite coverage and composition between symbiotic and non-symbiotic cnidaria suggest the presence/absence of dinoflagellates might place restrictions on the host genome.",
author = "Ruiz-Ramos, {Dannise V.} and Baums, {Iliana B.}",
note = "Funding Information: We thank J Parkinson, N. Polato, C. R. Fisher and three anonymous reviewers for their suggestions on the manuscript. M. Devlin-Durante and P. Casado helped with sample preparation. N. Polato assisted with genome analysis and C. Prada provided eggs from E. flexuosa. This work was supported by the Bureau of Ocean Energy Management contract M08PC20038 to TDI Brooks with vessel and submergence facilities support provided by National Oceanic and Atmospheric Administration's Office of Ocean Exploration and Research, and the National Science Foundation (OCE-0825979) to IB and an Alfred P. Sloan Scholarship to DVRR. Funding was also provided by the Gulf of Mexico Research Initiative funding to support the Ecosystem Impacts of Oil and Gas Inputs to the Gulf (ECOGIG) consortium. This is ECOGIG contribution number 303. Funding Information: We thank J Parkinson, N. Polato, C. R. Fisher and three anonymous reviewers for their suggestions on the manuscript. M. Devlin-Durante and P. Casado helped with sample preparation. N. Polato assisted with genome analysis and C. Prada provided eggs from E. flexuosa. This work was supported by the Bureau of Ocean Energy Management contract M08PC20038 to TDI Brooks with vessel and submergence facilities support provided by National Oceanic and Atmospheric Administration{\textquoteright}s Office of Ocean Exploration and Research, and the National Science Foundation (OCE – 0825979) to IB and an Alfred P. Sloan Scholarship to DVRR. Funding was also provided by the Gulf of Mexico Research Initiative funding to support the Ecosystem Impacts of Oil and Gas Inputs to the Gulf (ECOGIG) consortium. This is ECOGIG contribution number 303. Publisher Copyright: {\textcopyright} 2014 Ruiz-Ramos and Baums.",
year = "2014",
doi = "10.1186/1471-2164-15-939",
language = "English (US)",
volume = "15",
journal = "BMC Genomics",
issn = "1471-2164",
publisher = "BioMed Central",
number = "1",
}