Abstract
The topological binding of quantized vortices and electrons plays a crucial role in our understanding of the fractional quantum Hall effect, and is manifest in the prototypical wave functions for the fractional Hall states. However, from a microscopic point of view, the non-Pauli vortices are not strictly bound to electrons in realistic ground state wave functions. We study here the Girvin-MacDonald off-diagonal long-range order for certain bosonic wave functions at Landau level fillings ν=1m (m odd), obtained from fermionic fractional Hall wave functions by a singular gauge transformation, and find strong evidence that the exponent describing its long-distance algebraic decay has a universal value equal to m2. We interpret this to mean that the topological notion of electron-vortex binding remains generally well defined as a long-distance property.
Original language | English (US) |
---|---|
Article number | 035304 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 72 |
Issue number | 3 |
DOIs | |
State | Published - Jul 15 2005 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics