Minimum intervention cover of a causal graph

Saravanan Kandasamy, Arnab Bhattacharyya, Vasant G. Honavar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Eliciting causal effects from interventions and observations is one of the central concerns of science, and increasingly, artificial intelligence. We provide an algorithm that, given a causal graph G, determines MIC(G), a minimum intervention cover of G, i.e., a minimum set of interventions that suffices for identifying every causal effect that is identifiable in a causal model characterized by G. We establish the completeness of do-calculus for computing MIC(G). MIC(G) effectively offers an efficient compilation of all of the information obtainable from all possible interventions in a causal model characterized by G. Minimum intervention cover finds applications in a variety of contexts including counterfactual inference, and generalizing causal effects across experimental settings. We analyze the computational complexity of minimum intervention cover and identify some special cases of practical interest in which MIC(G) can be computed in time that is polynomial in the size of G.

Original languageEnglish (US)
Title of host publication33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PublisherAAAI press
Pages2876-2885
Number of pages10
ISBN (Electronic)9781577358091
StatePublished - 2019
Event33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States
Duration: Jan 27 2019Feb 1 2019

Publication series

Name33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019

Conference

Conference33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
CountryUnited States
CityHonolulu
Period1/27/192/1/19

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint Dive into the research topics of 'Minimum intervention cover of a causal graph'. Together they form a unique fingerprint.

Cite this