TY - GEN
T1 - Mitigating crew health degradation during long-term exposure to microgravity through countermeasure system implementation
AU - Gernand, Jeremy M.
PY - 2004
Y1 - 2004
N2 - Experience with the International Space Station (ISS) program demonstrates the degree to which engineering design and operational solutions must protect crewmembers from health risks due to long-term exposure to the microgravity environment. Risks to safety and health due to degradation in the microgravity environment include crew inability to complete emergency or nominal activities, increased risk of injury, and inability to complete safe return to the ground due to reduced strength or embrittled bones. These risks without controls slowly increase in probability for the length of the mission and become more significant for increasing mission durations. Countermeasures to microgravity include hardware systems that place a crewmember's body under elevated stress to produce an effect similar to daily exposure to gravity. The ISS countermeasure system is predominately composed of customized exercise machines. Historical treatment of microgravity countermeasure systems as medical research experiments unintentionally reduced the foreseen importance and therefore the capability of the systems to function in a long-term operational role. Long-term hazardous effects and steadily increasing operational risks due to non-functional countermeasure equipment require a more rigorous design approach and incorporation of redundancy into seemingly non-mission-critical hardware systems. Variations in the rate of health degradation and responsiveness to countermeasures among the crew population drastically increase the challenge for design requirements development and verification of the appropriate risk control strategy. The long-term nature of the hazards and severe limits on logistical re-supply mass, volume and frequency complicates assessment of hardware availability and verification of an adequate maintenance and sparing plan. Design achievement of medically defined performance requirements by microgravity countermeasure systems and incorporation of adequate failure tolerance significantly reduces these risks. Future implementation of on-site monitoring hardware for critical health parameters such as bone mineral density would allow greater responsiveness, efficiency, and optimized design of the countermeasures system.
AB - Experience with the International Space Station (ISS) program demonstrates the degree to which engineering design and operational solutions must protect crewmembers from health risks due to long-term exposure to the microgravity environment. Risks to safety and health due to degradation in the microgravity environment include crew inability to complete emergency or nominal activities, increased risk of injury, and inability to complete safe return to the ground due to reduced strength or embrittled bones. These risks without controls slowly increase in probability for the length of the mission and become more significant for increasing mission durations. Countermeasures to microgravity include hardware systems that place a crewmember's body under elevated stress to produce an effect similar to daily exposure to gravity. The ISS countermeasure system is predominately composed of customized exercise machines. Historical treatment of microgravity countermeasure systems as medical research experiments unintentionally reduced the foreseen importance and therefore the capability of the systems to function in a long-term operational role. Long-term hazardous effects and steadily increasing operational risks due to non-functional countermeasure equipment require a more rigorous design approach and incorporation of redundancy into seemingly non-mission-critical hardware systems. Variations in the rate of health degradation and responsiveness to countermeasures among the crew population drastically increase the challenge for design requirements development and verification of the appropriate risk control strategy. The long-term nature of the hazards and severe limits on logistical re-supply mass, volume and frequency complicates assessment of hardware availability and verification of an adequate maintenance and sparing plan. Design achievement of medically defined performance requirements by microgravity countermeasure systems and incorporation of adequate failure tolerance significantly reduces these risks. Future implementation of on-site monitoring hardware for critical health parameters such as bone mineral density would allow greater responsiveness, efficiency, and optimized design of the countermeasures system.
UR - http://www.scopus.com/inward/record.url?scp=19644386684&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=19644386684&partnerID=8YFLogxK
U2 - 10.1115/imece2004-59029
DO - 10.1115/imece2004-59029
M3 - Conference contribution
AN - SCOPUS:19644386684
SN - 0791847209
SN - 9780791847206
T3 - Engineering Technology Management
SP - 155
EP - 162
BT - Engineering Technology management - 2004
PB - American Society of Mechanical Engineers
T2 - 2004 ASME International Mechanical Engineering Congress and Exposition, IMECE
Y2 - 13 November 2004 through 19 November 2004
ER -