Mitomycin C linked to DNA minor groove binding agents: Synthesis, reductive activation, DNA binding and cross-linking properties and in vitro antitumor activity

Manuel M. Paz, Arunangshu Das, Maria Tomasz

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

Mitomycin C (MC) is a natural cytotoxic agent used in clinical anticancer chemotherapy. Its antitumor target appears to be DNA. Upon bioreductive activation MC alkylates and cross-links DNA. MC derivatives were synthesized in which MC was linked to DNA minor groove binding agents, analogous to netropsin and distamycin. One, two and three N-methylpyrrole carboxamide units were conjugated with MC by a (CH2)5-tether to the 7-amino group of MC (11, 12 and 13, respectively). In contrast to MC 11, 12 and 13 displayed non-covalent affinity to DNA. Their bioreductive activation by NADPH-cytochrome c reductase proceeded as fast as that of MC. Metabolites arising from reductive and low-pH activation were characterized and found to be analogous to those of MC. DNA cross-linking activities were weak and decreased with an increasing number of N-methylpyrrole carboxamide units linked with the mitomycin molecule. No adducts were formed with calf thymus DNA in detectable amounts. In vitro antitumor activities of 11-13 were determined using the NCI in vitro antitumor screen. The conjugates 11-13 are growth inhibitory; however, their activities are 1.5-2 orders of magnitude lower than that of MC. COMPARE analysis indicates that the mechanism of the action of 11 and 12 correlates moderately with MC but negatively with distamycin. Conjugate 13 correlates neither with MC nor with distamycin. The results suggest that the basic cause of the observed low activity of the MC-minor groove binder conjugates is the fast irreversible decay of the activated MC, competing effectively with the slow drug delivery to CpG sites, required for the alkylation. Copyright (C) 1999 Elsevier Science Ltd.

Original languageEnglish (US)
Pages (from-to)2713-2726
Number of pages14
JournalBioorganic and Medicinal Chemistry
Volume7
Issue number12
DOIs
StatePublished - Dec 1 1999

Fingerprint

Mitomycin
Chemical activation
DNA
In Vitro Techniques
Netropsin
NADPH-Ferrihemoprotein Reductase
Chemotherapy
Cytotoxins
Alkylation
Metabolites
Drug delivery
Binders

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Pharmaceutical Science
  • Drug Discovery
  • Clinical Biochemistry
  • Organic Chemistry

Cite this

@article{6f52cbd91d2b4057abc692cb7f8cc1e6,
title = "Mitomycin C linked to DNA minor groove binding agents: Synthesis, reductive activation, DNA binding and cross-linking properties and in vitro antitumor activity",
abstract = "Mitomycin C (MC) is a natural cytotoxic agent used in clinical anticancer chemotherapy. Its antitumor target appears to be DNA. Upon bioreductive activation MC alkylates and cross-links DNA. MC derivatives were synthesized in which MC was linked to DNA minor groove binding agents, analogous to netropsin and distamycin. One, two and three N-methylpyrrole carboxamide units were conjugated with MC by a (CH2)5-tether to the 7-amino group of MC (11, 12 and 13, respectively). In contrast to MC 11, 12 and 13 displayed non-covalent affinity to DNA. Their bioreductive activation by NADPH-cytochrome c reductase proceeded as fast as that of MC. Metabolites arising from reductive and low-pH activation were characterized and found to be analogous to those of MC. DNA cross-linking activities were weak and decreased with an increasing number of N-methylpyrrole carboxamide units linked with the mitomycin molecule. No adducts were formed with calf thymus DNA in detectable amounts. In vitro antitumor activities of 11-13 were determined using the NCI in vitro antitumor screen. The conjugates 11-13 are growth inhibitory; however, their activities are 1.5-2 orders of magnitude lower than that of MC. COMPARE analysis indicates that the mechanism of the action of 11 and 12 correlates moderately with MC but negatively with distamycin. Conjugate 13 correlates neither with MC nor with distamycin. The results suggest that the basic cause of the observed low activity of the MC-minor groove binder conjugates is the fast irreversible decay of the activated MC, competing effectively with the slow drug delivery to CpG sites, required for the alkylation. Copyright (C) 1999 Elsevier Science Ltd.",
author = "Paz, {Manuel M.} and Arunangshu Das and Maria Tomasz",
year = "1999",
month = "12",
day = "1",
doi = "10.1016/S0968-0896(99)00223-0",
language = "English (US)",
volume = "7",
pages = "2713--2726",
journal = "Bioorganic and Medicinal Chemistry",
issn = "0968-0896",
publisher = "Elsevier Limited",
number = "12",

}

TY - JOUR

T1 - Mitomycin C linked to DNA minor groove binding agents

T2 - Synthesis, reductive activation, DNA binding and cross-linking properties and in vitro antitumor activity

AU - Paz, Manuel M.

AU - Das, Arunangshu

AU - Tomasz, Maria

PY - 1999/12/1

Y1 - 1999/12/1

N2 - Mitomycin C (MC) is a natural cytotoxic agent used in clinical anticancer chemotherapy. Its antitumor target appears to be DNA. Upon bioreductive activation MC alkylates and cross-links DNA. MC derivatives were synthesized in which MC was linked to DNA minor groove binding agents, analogous to netropsin and distamycin. One, two and three N-methylpyrrole carboxamide units were conjugated with MC by a (CH2)5-tether to the 7-amino group of MC (11, 12 and 13, respectively). In contrast to MC 11, 12 and 13 displayed non-covalent affinity to DNA. Their bioreductive activation by NADPH-cytochrome c reductase proceeded as fast as that of MC. Metabolites arising from reductive and low-pH activation were characterized and found to be analogous to those of MC. DNA cross-linking activities were weak and decreased with an increasing number of N-methylpyrrole carboxamide units linked with the mitomycin molecule. No adducts were formed with calf thymus DNA in detectable amounts. In vitro antitumor activities of 11-13 were determined using the NCI in vitro antitumor screen. The conjugates 11-13 are growth inhibitory; however, their activities are 1.5-2 orders of magnitude lower than that of MC. COMPARE analysis indicates that the mechanism of the action of 11 and 12 correlates moderately with MC but negatively with distamycin. Conjugate 13 correlates neither with MC nor with distamycin. The results suggest that the basic cause of the observed low activity of the MC-minor groove binder conjugates is the fast irreversible decay of the activated MC, competing effectively with the slow drug delivery to CpG sites, required for the alkylation. Copyright (C) 1999 Elsevier Science Ltd.

AB - Mitomycin C (MC) is a natural cytotoxic agent used in clinical anticancer chemotherapy. Its antitumor target appears to be DNA. Upon bioreductive activation MC alkylates and cross-links DNA. MC derivatives were synthesized in which MC was linked to DNA minor groove binding agents, analogous to netropsin and distamycin. One, two and three N-methylpyrrole carboxamide units were conjugated with MC by a (CH2)5-tether to the 7-amino group of MC (11, 12 and 13, respectively). In contrast to MC 11, 12 and 13 displayed non-covalent affinity to DNA. Their bioreductive activation by NADPH-cytochrome c reductase proceeded as fast as that of MC. Metabolites arising from reductive and low-pH activation were characterized and found to be analogous to those of MC. DNA cross-linking activities were weak and decreased with an increasing number of N-methylpyrrole carboxamide units linked with the mitomycin molecule. No adducts were formed with calf thymus DNA in detectable amounts. In vitro antitumor activities of 11-13 were determined using the NCI in vitro antitumor screen. The conjugates 11-13 are growth inhibitory; however, their activities are 1.5-2 orders of magnitude lower than that of MC. COMPARE analysis indicates that the mechanism of the action of 11 and 12 correlates moderately with MC but negatively with distamycin. Conjugate 13 correlates neither with MC nor with distamycin. The results suggest that the basic cause of the observed low activity of the MC-minor groove binder conjugates is the fast irreversible decay of the activated MC, competing effectively with the slow drug delivery to CpG sites, required for the alkylation. Copyright (C) 1999 Elsevier Science Ltd.

UR - http://www.scopus.com/inward/record.url?scp=0033389727&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033389727&partnerID=8YFLogxK

U2 - 10.1016/S0968-0896(99)00223-0

DO - 10.1016/S0968-0896(99)00223-0

M3 - Article

C2 - 10658576

AN - SCOPUS:0033389727

VL - 7

SP - 2713

EP - 2726

JO - Bioorganic and Medicinal Chemistry

JF - Bioorganic and Medicinal Chemistry

SN - 0968-0896

IS - 12

ER -