Mixed-dimensional modeling of delamination in rare earth-barium-copper-oxide coated conductors composed of laminated high-aspect-ratio thin films

Peifeng Gao, Wan Kan Chan, Xingzhe Wang, Justin Schwartz

Research output: Contribution to journalArticle

9 Scopus citations

Abstract

Rare earth-barium-copper-oxide (REBCO) coated conductors are promising conductors for high energy, high field and high temperature superconducting applications. In the case of epoxy-impregnated REBCO superconducting coils, however, excessive transverse stresses generated from winding, cooling, and Lorentz forces on the REBCO conductors can cause delamination, resulting in reduction in the load-carrying capacity as well as significant degradation in the coil's critical current. In this study, the stresses and strains, and delamination in a REBCO conductor are analyzed via a mixed-dimensional finite element method (FEM) based on the cohesive zone model (CZM). The mixed-dimensional method models any number of laminated high-aspect-ratio thin layers in a composite as stacked two-dimensional (2D) surfaces, thus, resolving the thickness-dependent meshing and computational problems in modeling such composites with full three-dimensional (3D) FEM approaches. In the studied coated conductor, the major thin constituent layers, namely, the silver, REBCO and buffer layers, are modeled as 2D surfaces while the relatively thick stabilizer and substrate are in 3D layers. All the adjacent layers are coupled via spring equations under the CZM framework. The mixed-dimensional delamination model is validated by a full-3D FEM counterpart model. Simulation results show that the mixed-dimensional model performs simulations with much higher computational efficiency than the full-3D counterpart while maintaining sufficient accuracy. Effects of the anvil size and initial crack size on delamination behavior are discussed and compared to experimental phenomena. Furthermore, the stress distributions of the constituent layers of the conductor under different delamination initiation sites are predicted.

Original languageEnglish (US)
Article number074004
JournalSuperconductor Science and Technology
Volume31
Issue number7
DOIs
StatePublished - Jun 13 2018

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Condensed Matter Physics
  • Metals and Alloys
  • Electrical and Electronic Engineering
  • Materials Chemistry

Cite this