Modeling magneto-active elastomer composites using the finite element method

Robert Sheridan, Carrie Tedesco, Paris R. Vonlockette, Mary I. Frecker

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Magneto-active elastomers (MAE) are a new branch of smart materials that consist of hard-magnetic particles such as barium ferrite in an elastomer matrix. Under the application of a uniform magnetic field, the MAE material undergoes large deformation as the material bends due to magnetic torques acting on the distribution of hard-magnetic particles. This behavior demonstrates the potential of MAEs to act as remote actuators. MAEs vary from magnetorheological elastomers (MRE) which use soft-magnetic iron particles in place of the hard-magnetic particles and they are driven by magnetic interactions between particles. In this work, MAEs were fabricated using 30% v/v 325 mesh M-type barium ferrite (BaM) particles in Dow Corning HS II silicone elastomers. Prior to curing, the samples were placed in a uniform ( ∼2 Tesla) magnetic field to align the magnetic particles and produce a magnetization oriented in the direction of the applied magnetic field. The specimens were bonded to a passive poldymethylsiloxane (PDMS) substrate to form a two-segment accordion structure where the MAEs with magnetization, M, were placed in opposing orientations a prescribed distance apart. The application of a uniform magnetic field perpendicular to the magnetization of the undeformed MAEs would result in a bend (on the PDMS) that is dependent upon the orientation of the magnetic particles and the direction of the applied field. This behavior of the composite structure highlights the ability of the MAE material to perform work. Experimental testing of the MAEs used a two-segment accordion structure with fixed boundary-conditions on both ends of the PDMS substrate and a uniform magnetic field was applied to the structure. The resulting deformation roughly represented either a mountain or valley fold (dependent upon the orientation of the applied field). The resulting axial force was observed and compared to computational simulations which utilized numerical techniques to develop approximate solutions. This procedure was repeated with a prescribed displacement on one of the two fixed boundary conditions to induce bending prior to the application of a uniform magnetic field. Results show a decrease in magnetic work potential with increases in the aforementioned prescribed displacement; results also show an increase in magnetic work potential with increases in the applied magnetic field.

Original languageEnglish (US)
Title of host publicationASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
PublisherWeb Portal ASME (American Society of Mechanical Engineers)
ISBN (Electronic)9780791846148
DOIs
StatePublished - Jan 1 2014
EventASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014 - Newport, United States
Duration: Sep 8 2014Sep 10 2014

Publication series

NameASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
Volume1

Other

OtherASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
CountryUnited States
CityNewport
Period9/8/149/10/14

All Science Journal Classification (ASJC) codes

  • Biomaterials
  • Civil and Structural Engineering

Fingerprint Dive into the research topics of 'Modeling magneto-active elastomer composites using the finite element method'. Together they form a unique fingerprint.

Cite this