Modeling nongray gas-phase and soot radiation in luminous turbulent nonpremixed jet flames

L. Wang, M. F. Modest, D. C. Haworth, S. R. Turns

Research output: Contribution to journalArticle

17 Scopus citations

Abstract

Much progress has been made in radiative heat transfer modeling with respect to treatment of nongray radiation from both gas-phase species and soot particles, while radiation modeling in turbulent flame simulations is still in its infancy. Aiming at reducing this gap, this paper introduces state-of-the-art models of gas-phase and soot radiation to turbulent flame simulations. The full-spectrum k-distribution method (Modest, M.F., 2003, Journal of Quantitative Spectroscopy & Radiative Transfer, 76, 69-83) is implemented into a three-dimensional unstructured CFD code for nongray radiation modeling. The mixture full-spectrum k-distributions including nongray absorbing soot particles are constructed from a narrow-band k-distribution database created for individual gas-phase species, and an efficient scheme is employed for their construction in CFD simulations. A detailed reaction mechanism including NOx and soot kinetics is used to predict flame structure, and a detailed soot model using a method of moments is employed to determine soot particle size distributions. A spherical-harmonic P1 approximation is invoked to solve the radiative transfer equation. An oxygen-enriched, turbulent, nonpremixed jet flame is simulated, which features large concentrations of gas-phase radiating species and soot particles. Nongray soot modeling is shown to be of greater importance than nongray gas modeling in sooty flame simulations, with gray soot models producing large errors. The nongray treatment of soot strongly influences flame temperatures in the upstream and the flame-tip region and is essential for accurate predictions of NO. The nongray treatment of gases, however, weakly influences upstream flame temperatures and, therefore, has only a small effect on NO predictions. The effect of nongray soot radiation on flame temperature is also substantial in downstream regions where the soot concentration is small. Limitations of the P1 approximation are discussed for the jet flame configuration; the P1 approximation yields large errors in the spatial distribution of the computed radiative heat flux for highly anisotropic radiation fields such as those in flames with localized, near-opaque soot regions.

Original languageEnglish (US)
Pages (from-to)673-691
Number of pages19
JournalCombustion Theory and Modelling
Volume9
Issue number4
DOIs
StatePublished - Nov 2005

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)
  • Modeling and Simulation
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Modeling nongray gas-phase and soot radiation in luminous turbulent nonpremixed jet flames'. Together they form a unique fingerprint.

  • Cite this