Modeling of emission signatures of massive black hole binaries. I. Methods

Tamara Bogdanović, Britton D. Smith, Steinn Sigurdsson, Michael Eracleous

Research output: Contribution to journalArticlepeer-review

55 Scopus citations

Abstract

We model the electromagnetic signatures of massive black hole binaries (MBHBs) with an associated gas component. The method comprises numerical simulations of relativistic binaries and gas coupled with calculations of the physical properties of the emitting gas. We calculate the UV/X-ray and the Hα light curves and the Hα emission profiles. The simulations are carried out with a modified version of the parallel tree SPH code Gadget. The heating, cooling, and radiative processes are calculated for two different physical scenarios, where the gas is approximated as a blackbody or a solar metallicity gas. The calculation for the solar metallicity scenario is carried out with the photo-ionization code Cloudy. We focus on subparsec binaries that have not yet entered the gravitational radiation phase. The results from the first set of calculations, carried out for a coplanar binary and gas disk, suggest that there are pronounced outbursts in the X-ray light curve during pericentric passages. If such outbursts persist for a large fraction of the lifetime of the system, they can serve as an indicator of this type of binary. The predicted Hα emission line profiles may be used as a criterion for selection of MBHB candidates from existing archival data. The orbital period and mass ratio of a binary may be inferred after carefully monitoring the evolution of the Hα profiles of the candidates. The discovery of subparsec binaries is an important step in understanding of the merger rates of MBHBs and their evolution toward the detectable gravitational wave window.

Original languageEnglish (US)
Pages (from-to)455-480
Number of pages26
JournalAstrophysical Journal, Supplement Series
Volume174
Issue number2
DOIs
StatePublished - Feb 2008

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Modeling of emission signatures of massive black hole binaries. I. Methods'. Together they form a unique fingerprint.

Cite this