Modeling spatially varying landscape change points in species occurrence thresholds

Tyler Wagner, Stephen R. Midway

Research output: Contribution to journalArticle

9 Scopus citations

Abstract

Predicting species distributions at scales of regions to continents is often necessary, as largescale phenomena influence the distributions of spatially structured populations. Land use and land cover are important large-scale drivers of species distributions, and landscapes are known to create species occurrence thresholds, where small changes in a landscape characteristic results in abrupt changes in occurrence. The value of the landscape characteristic at which this change occurs is referred to as a change point. We present a hierarchical Bayesian threshold model (HBTM) that allows for estimating spatially varying parameters, including change points. Our model also allows for modeling estimated parameters in an effort to understand large-scale drivers of variability in land use and land cover on species occurrence thresholds. We use range-wide detection/nondetection data for the eastern brook trout (Salvelinus fontinalis), a stream-dwelling salmonid, to illustrate our HBTM for estimating and modeling spatially varying threshold parameters in species occurrence. We parameterized the model for investigating thresholds in landscape predictor variables that are measured as proportions, and which are therefore restricted to values between 0 and 1. Our HBTM estimated spatially varying thresholds in brook trout occurrence for both the proportion agricultural and urban land uses. There was relatively little spatial variation in change point estimates, although there was spatial variability in the overall shape of the threshold response and associated uncertainty. In addition, regional mean stream water temperature was correlated to the change point parameters for the proportion of urban land use, with the change point value increasing with increasing mean stream water temperature. We present a framework for quantify macrosystem variability in spatially varying threshold model parameters in relation to important largescale drivers such as land use and land cover. Although the model presented is a logistic HBTM, it can easily be extended to accommodate other statistical distributions for modeling species richness or abundance.

Original languageEnglish (US)
Article number145
JournalEcosphere
Volume5
Issue number11
DOIs
StatePublished - Nov 1 2014

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Ecology

Fingerprint Dive into the research topics of 'Modeling spatially varying landscape change points in species occurrence thresholds'. Together they form a unique fingerprint.

  • Cite this