Modeling the radical chemistry in an oxidation flow reactor: Radical formation and recycling, sensitivities, and the OH exposure estimation equation

Rui Li, Brett B. Palm, Amber M. Ortega, James Hlywiak, Weiwei Hu, Zhe Peng, Douglas A. Day, Christoph Knote, William H. Brune, Joost A. De Gouw, Jose L. Jimenez

Research output: Contribution to journalArticlepeer-review

78 Scopus citations

Abstract

Oxidation flow reactors (OFRs) containing low-pressure mercury (Hg) lamps that emit UV light at both 185 and 254 nm ("OFR185") to generate OH radicals and O3 are used in many areas of atmospheric science and in pollution control devices. The widely used potential aerosol mass (PAM) OFR was designed for studies on the formation and oxidation of secondary organic aerosols (SOA), allowing for a wide range of oxidant exposures and short experiment duration with reduced wall loss effects. Although fundamental photochemical and kinetic data applicable to these reactors are available, the radical chemistry and its sensitivities have not been modeled in detail before; thus, experimental verification of our understanding of this chemistry has been very limited. To better understand the chemistry in the OFR185, a model has been developed to simulate the formation, recycling, and destruction of radicals and to allow the quantification of OH exposure (OHexp) in the reactor and its sensitivities. The model outputs of OHexp were evaluated against laboratory calibration experiments by estimating OHexp from trace gas removal and were shown to agree within a factor of 2. A sensitivity study was performed to characterize the dependence of the OHexp, HO2/OH ratio, and O3 and H2O2 output concentrations on reactor parameters. OHexp is strongly affected by the UV photon flux, absolute humidity, reactor residence time, and the OH reactivity (OHR) of the sampled air, and more weakly by pressure and temperature. OHexp can be strongly suppressed by high OHR, especially under low UV light conditions. A OHexp estimation equation as a function of easily measurable quantities was shown to reproduce model results within 10% (average absolute value of the relative errors) over the whole operating range of the reactor. OHexp from the estimation equation was compared with measurements in several field campaigns and shows agreement within a factor of 3. The improved understanding of the OFR185 and quantification of OHexp resulting from this work further establish the usefulness of such reactors for research studies, especially where quantifying the oxidation exposure is important.

Original languageEnglish (US)
Pages (from-to)4418-4432
Number of pages15
JournalJournal of Physical Chemistry A
Volume119
Issue number19
DOIs
StatePublished - May 14 2015

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Modeling the radical chemistry in an oxidation flow reactor: Radical formation and recycling, sensitivities, and the OH exposure estimation equation'. Together they form a unique fingerprint.

Cite this