6 Citations (Scopus)

Abstract

Barrett's oesophagus is the replacement of normal squamous oesophageal epithelium with an intestinalized columnar epithelium. Although some insight has been gained as to what Barrett's oesophagus is, how this columnar epithelium emerges from within a stratified squamous epithelium remains an unanswered question. We have sought to determine whether oesophageal keratinocytes can be trans-differentiated into Barrett's oesophagus cells. Using an Affymetrix microarray, we found unexpectedly that gene-expression patterns in the Barrett's oesophagus were only slightly more similar to the normal small intestine than they were to the normal oesophagus. Thus gene-expression patterns suggest significant molecular similarities remain between Barrett's oesophagus cells and normal squamous oesophageal epithelium, despite their histological resemblance with intestine. We next determined whether directed expression of intestine-specific transcription factors could induce intestinalization of keratinocytes. Retroviral-mediated Cdx2 (Caudal-type homeobox 2) expression in immortalized human oesophageal keratinocytes engineered with human telomerase reverse transcriptase (EPC2-hTERT cells) could be established transiently, but not maintained, and was associated with a reduction in cell proliferation. Co-expression of cyclin D1 rescued proliferation in the Cdx2-expressing cells, but co-expression of dominant-negative p53 did not. Cdx2 expression in the EPC2-hTERT.D1 cells did not induce intestinalization. However, when combined with treatments that induce chromatin remodelling, there was a significant induction of Barrett's oesophagus-associated genes. Studies are ongoing to determine whether other intestinal transcription factors, either alone or in combination, can provoke greater intestinalization of oesophageal keratinocytes. We conclude that, on the basis of gene-expression patterns, Barrett's oesophagus epithelial cells may represent an intermediate between oesophageal keratinocytes and intestinal epithelial cells. Moreover, our findings suggest that it may be possible to induce Barrett's oesophagus epithelial cells from oesophageal keratinocytes by altering the expression of certain critical genes.

Original languageEnglish (US)
Pages (from-to)321-326
Number of pages6
JournalBiochemical Society transactions
Volume38
Issue number2
DOIs
StatePublished - Apr 1 2010

Fingerprint

Barrett Esophagus
Keratinocytes
Epithelium
Gene expression
Homeobox Genes
Epithelial Cells
Transcription Factors
Genes
Gene Expression
Intestines
Cyclin D1
Cell proliferation
Microarrays
Chromatin
Chromatin Assembly and Disassembly
Esophagus
Small Intestine
Cell Proliferation

All Science Journal Classification (ASJC) codes

  • Biochemistry

Cite this

Kong, Jianping ; Stairs, Douglas B. ; Lynch, John P. / Modelling Barrett's oesophagus. In: Biochemical Society transactions. 2010 ; Vol. 38, No. 2. pp. 321-326.
@article{fb3966a717d846aca592d4523baa3a67,
title = "Modelling Barrett's oesophagus",
abstract = "Barrett's oesophagus is the replacement of normal squamous oesophageal epithelium with an intestinalized columnar epithelium. Although some insight has been gained as to what Barrett's oesophagus is, how this columnar epithelium emerges from within a stratified squamous epithelium remains an unanswered question. We have sought to determine whether oesophageal keratinocytes can be trans-differentiated into Barrett's oesophagus cells. Using an Affymetrix microarray, we found unexpectedly that gene-expression patterns in the Barrett's oesophagus were only slightly more similar to the normal small intestine than they were to the normal oesophagus. Thus gene-expression patterns suggest significant molecular similarities remain between Barrett's oesophagus cells and normal squamous oesophageal epithelium, despite their histological resemblance with intestine. We next determined whether directed expression of intestine-specific transcription factors could induce intestinalization of keratinocytes. Retroviral-mediated Cdx2 (Caudal-type homeobox 2) expression in immortalized human oesophageal keratinocytes engineered with human telomerase reverse transcriptase (EPC2-hTERT cells) could be established transiently, but not maintained, and was associated with a reduction in cell proliferation. Co-expression of cyclin D1 rescued proliferation in the Cdx2-expressing cells, but co-expression of dominant-negative p53 did not. Cdx2 expression in the EPC2-hTERT.D1 cells did not induce intestinalization. However, when combined with treatments that induce chromatin remodelling, there was a significant induction of Barrett's oesophagus-associated genes. Studies are ongoing to determine whether other intestinal transcription factors, either alone or in combination, can provoke greater intestinalization of oesophageal keratinocytes. We conclude that, on the basis of gene-expression patterns, Barrett's oesophagus epithelial cells may represent an intermediate between oesophageal keratinocytes and intestinal epithelial cells. Moreover, our findings suggest that it may be possible to induce Barrett's oesophagus epithelial cells from oesophageal keratinocytes by altering the expression of certain critical genes.",
author = "Jianping Kong and Stairs, {Douglas B.} and Lynch, {John P.}",
year = "2010",
month = "4",
day = "1",
doi = "10.1042/BST0380321",
language = "English (US)",
volume = "38",
pages = "321--326",
journal = "Biochemical Society Transactions",
issn = "0300-5127",
publisher = "Portland Press Ltd.",
number = "2",

}

Modelling Barrett's oesophagus. / Kong, Jianping; Stairs, Douglas B.; Lynch, John P.

In: Biochemical Society transactions, Vol. 38, No. 2, 01.04.2010, p. 321-326.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Modelling Barrett's oesophagus

AU - Kong, Jianping

AU - Stairs, Douglas B.

AU - Lynch, John P.

PY - 2010/4/1

Y1 - 2010/4/1

N2 - Barrett's oesophagus is the replacement of normal squamous oesophageal epithelium with an intestinalized columnar epithelium. Although some insight has been gained as to what Barrett's oesophagus is, how this columnar epithelium emerges from within a stratified squamous epithelium remains an unanswered question. We have sought to determine whether oesophageal keratinocytes can be trans-differentiated into Barrett's oesophagus cells. Using an Affymetrix microarray, we found unexpectedly that gene-expression patterns in the Barrett's oesophagus were only slightly more similar to the normal small intestine than they were to the normal oesophagus. Thus gene-expression patterns suggest significant molecular similarities remain between Barrett's oesophagus cells and normal squamous oesophageal epithelium, despite their histological resemblance with intestine. We next determined whether directed expression of intestine-specific transcription factors could induce intestinalization of keratinocytes. Retroviral-mediated Cdx2 (Caudal-type homeobox 2) expression in immortalized human oesophageal keratinocytes engineered with human telomerase reverse transcriptase (EPC2-hTERT cells) could be established transiently, but not maintained, and was associated with a reduction in cell proliferation. Co-expression of cyclin D1 rescued proliferation in the Cdx2-expressing cells, but co-expression of dominant-negative p53 did not. Cdx2 expression in the EPC2-hTERT.D1 cells did not induce intestinalization. However, when combined with treatments that induce chromatin remodelling, there was a significant induction of Barrett's oesophagus-associated genes. Studies are ongoing to determine whether other intestinal transcription factors, either alone or in combination, can provoke greater intestinalization of oesophageal keratinocytes. We conclude that, on the basis of gene-expression patterns, Barrett's oesophagus epithelial cells may represent an intermediate between oesophageal keratinocytes and intestinal epithelial cells. Moreover, our findings suggest that it may be possible to induce Barrett's oesophagus epithelial cells from oesophageal keratinocytes by altering the expression of certain critical genes.

AB - Barrett's oesophagus is the replacement of normal squamous oesophageal epithelium with an intestinalized columnar epithelium. Although some insight has been gained as to what Barrett's oesophagus is, how this columnar epithelium emerges from within a stratified squamous epithelium remains an unanswered question. We have sought to determine whether oesophageal keratinocytes can be trans-differentiated into Barrett's oesophagus cells. Using an Affymetrix microarray, we found unexpectedly that gene-expression patterns in the Barrett's oesophagus were only slightly more similar to the normal small intestine than they were to the normal oesophagus. Thus gene-expression patterns suggest significant molecular similarities remain between Barrett's oesophagus cells and normal squamous oesophageal epithelium, despite their histological resemblance with intestine. We next determined whether directed expression of intestine-specific transcription factors could induce intestinalization of keratinocytes. Retroviral-mediated Cdx2 (Caudal-type homeobox 2) expression in immortalized human oesophageal keratinocytes engineered with human telomerase reverse transcriptase (EPC2-hTERT cells) could be established transiently, but not maintained, and was associated with a reduction in cell proliferation. Co-expression of cyclin D1 rescued proliferation in the Cdx2-expressing cells, but co-expression of dominant-negative p53 did not. Cdx2 expression in the EPC2-hTERT.D1 cells did not induce intestinalization. However, when combined with treatments that induce chromatin remodelling, there was a significant induction of Barrett's oesophagus-associated genes. Studies are ongoing to determine whether other intestinal transcription factors, either alone or in combination, can provoke greater intestinalization of oesophageal keratinocytes. We conclude that, on the basis of gene-expression patterns, Barrett's oesophagus epithelial cells may represent an intermediate between oesophageal keratinocytes and intestinal epithelial cells. Moreover, our findings suggest that it may be possible to induce Barrett's oesophagus epithelial cells from oesophageal keratinocytes by altering the expression of certain critical genes.

UR - http://www.scopus.com/inward/record.url?scp=77953241146&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77953241146&partnerID=8YFLogxK

U2 - 10.1042/BST0380321

DO - 10.1042/BST0380321

M3 - Article

C2 - 20298176

AN - SCOPUS:77953241146

VL - 38

SP - 321

EP - 326

JO - Biochemical Society Transactions

JF - Biochemical Society Transactions

SN - 0300-5127

IS - 2

ER -