Modified ball-type automatic balancer for rotating shafts: Analysis and experiment

Ahmad M. Haidar, Jose L. Palacios

Research output: Contribution to journalArticlepeer-review

Abstract

The automatic balancer is a passive device with masses that are free to move in a shaft-concentric race. At supercritical shaft speeds, the masses automatically re-align to counteract imbalance and reduce vibration. This phenomenon is caused by the phase shift of the shaft bending response that occurs through resonance. The conventional automatic balancer (dual-ball, single race) reduces or eliminates vibration at supercritical speeds given a frictionless race, but increases vibration at subcritical and critical speed transitions. In this work, a fully passive, partitioned-track, automatic balancer with centrifugal clamps is proposed to improve performance during suboptimal operation. Both analysis and experiment are presented to support the novel design. Experimentally, a partitioned-race balancer reduced vibration by 7% during spin up, 83% at supercritical steadystate, and 65% during spin down – a complete improvement over conventional balancers. Model predictions are within 14% of experimental data at steadystate. Additionally, the use of centrifugal clamps reduced vibrations by up to 95% during critical speed transitions in analysis. The vibration reduction capability presented in this research outside of supercritical steadystate operation is a necessary advancement for the practical application of passive balancing devices.

Original languageEnglish (US)
Article number115927
JournalJournal of Sound and Vibration
Volume496
DOIs
StatePublished - Mar 31 2021

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Mechanics of Materials
  • Acoustics and Ultrasonics
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Modified ball-type automatic balancer for rotating shafts: Analysis and experiment'. Together they form a unique fingerprint.

Cite this