Molecular dynamics simulation of zirconia melting

Sergio Davis, Anatoly B. Belonoshko, Anders Rosengren, Adri Van Duin, Börje Johansson

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

The melting point for the tetragonal and cubic phases of zirconia (ZrO2) was computed using Z-method microcanonical molecular dynamics simulations for two different interaction models: the empirical Lewis-Catlow potential versus the relatively new reactive force field (ReaxFF) model. While both models reproduce the stability of the cubic phase over the tetragonal phase at high temperatures, ReaxFF also gives approximately the correct melting point, around 2900 K, whereas the Lewis-Catlow estimate is above 6000 K.

Original languageEnglish (US)
Pages (from-to)789-797
Number of pages9
JournalCentral European Journal of Physics
Volume8
Issue number5
DOIs
StatePublished - Jan 1 2010

Fingerprint

zirconium oxides
melting
molecular dynamics
melting points
simulation
field theory (physics)
estimates
interactions

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Cite this

Davis, Sergio ; Belonoshko, Anatoly B. ; Rosengren, Anders ; Van Duin, Adri ; Johansson, Börje. / Molecular dynamics simulation of zirconia melting. In: Central European Journal of Physics. 2010 ; Vol. 8, No. 5. pp. 789-797.
@article{1d67828da69c4705b86234602ae7f72a,
title = "Molecular dynamics simulation of zirconia melting",
abstract = "The melting point for the tetragonal and cubic phases of zirconia (ZrO2) was computed using Z-method microcanonical molecular dynamics simulations for two different interaction models: the empirical Lewis-Catlow potential versus the relatively new reactive force field (ReaxFF) model. While both models reproduce the stability of the cubic phase over the tetragonal phase at high temperatures, ReaxFF also gives approximately the correct melting point, around 2900 K, whereas the Lewis-Catlow estimate is above 6000 K.",
author = "Sergio Davis and Belonoshko, {Anatoly B.} and Anders Rosengren and {Van Duin}, Adri and B{\"o}rje Johansson",
year = "2010",
month = "1",
day = "1",
doi = "10.2478/s11534-009-0152-3",
language = "English (US)",
volume = "8",
pages = "789--797",
journal = "Open Physics",
issn = "1895-1082",
publisher = "Walter de Gruyter GmbH & Co. KG",
number = "5",

}

Davis, S, Belonoshko, AB, Rosengren, A, Van Duin, A & Johansson, B 2010, 'Molecular dynamics simulation of zirconia melting', Central European Journal of Physics, vol. 8, no. 5, pp. 789-797. https://doi.org/10.2478/s11534-009-0152-3

Molecular dynamics simulation of zirconia melting. / Davis, Sergio; Belonoshko, Anatoly B.; Rosengren, Anders; Van Duin, Adri; Johansson, Börje.

In: Central European Journal of Physics, Vol. 8, No. 5, 01.01.2010, p. 789-797.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Molecular dynamics simulation of zirconia melting

AU - Davis, Sergio

AU - Belonoshko, Anatoly B.

AU - Rosengren, Anders

AU - Van Duin, Adri

AU - Johansson, Börje

PY - 2010/1/1

Y1 - 2010/1/1

N2 - The melting point for the tetragonal and cubic phases of zirconia (ZrO2) was computed using Z-method microcanonical molecular dynamics simulations for two different interaction models: the empirical Lewis-Catlow potential versus the relatively new reactive force field (ReaxFF) model. While both models reproduce the stability of the cubic phase over the tetragonal phase at high temperatures, ReaxFF also gives approximately the correct melting point, around 2900 K, whereas the Lewis-Catlow estimate is above 6000 K.

AB - The melting point for the tetragonal and cubic phases of zirconia (ZrO2) was computed using Z-method microcanonical molecular dynamics simulations for two different interaction models: the empirical Lewis-Catlow potential versus the relatively new reactive force field (ReaxFF) model. While both models reproduce the stability of the cubic phase over the tetragonal phase at high temperatures, ReaxFF also gives approximately the correct melting point, around 2900 K, whereas the Lewis-Catlow estimate is above 6000 K.

UR - http://www.scopus.com/inward/record.url?scp=77955050839&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77955050839&partnerID=8YFLogxK

U2 - 10.2478/s11534-009-0152-3

DO - 10.2478/s11534-009-0152-3

M3 - Article

AN - SCOPUS:77955050839

VL - 8

SP - 789

EP - 797

JO - Open Physics

JF - Open Physics

SN - 1895-1082

IS - 5

ER -