Molecular plasticity and functional enhancements of leg muscles in response to hypergravity in the fruit fly Drosophila melanogaster

Rudolf J. Schilder, Megan Raynor

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Studies of organismal and tissue biomechanics have clearly demonstrated that musculoskeletal design is strongly dependent on experienced loads, which can vary in the short term, as a result of growth during life history and during the evolution of animal body size. However, how animals actually perceive and make adjustments to their load-bearing musculoskeletal elements that accommodate variation in their body weight is poorly understood. We developed an experimental model system that can be used to start addressing these open questions, and uses hypergravity centrifugation to experimentally manipulate the loads experienced by Drosophila melanogaster. We examined effects of this manipulation on leg muscle alternative splicing of the sarcomere gene troponin T (Dmel \up; Fbgn0004169, herein referred to by its synonym TnT), a process that was previously demonstrated to precisely correlate with quantitative variation in body weight in Lepidoptera and rat. In a similar fashion, hypergravity centrifugation caused fast (i.e. within 24 h) changes to fly leg muscle TnT alternative splicing that correlated with body weight variation across eight D. melanogaster lines. Hypergravity treatment also appeared to enhance leg muscle function, as centrifuged flies showed an increased negative geotaxis response and jump ability. Although the identity and location of the sensors and effectors involved remains unknown, our results provide further support for the existence of an evolutionarily conserved mechanism that translates signals that encode body weight into appropriate skeletal muscle molecular and functional responses.

Original languageEnglish (US)
Pages (from-to)3508-3518
Number of pages11
JournalJournal of Experimental Biology
Volume220
Issue number19
DOIs
StatePublished - Oct 1 2017

Fingerprint

Hypergravity
fruit flies
Drosophila melanogaster
Diptera
plasticity
Fruit
Leg
legs
muscle
fruit
Body Weight
Muscles
muscles
body weight
alternative splicing
Alternative Splicing
Centrifugation
centrifugation
geotaxis
biomechanics

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Physiology
  • Aquatic Science
  • Animal Science and Zoology
  • Molecular Biology
  • Insect Science

Cite this

@article{84bb5b5a07d54ae08020fdd6f7f683a8,
title = "Molecular plasticity and functional enhancements of leg muscles in response to hypergravity in the fruit fly Drosophila melanogaster",
abstract = "Studies of organismal and tissue biomechanics have clearly demonstrated that musculoskeletal design is strongly dependent on experienced loads, which can vary in the short term, as a result of growth during life history and during the evolution of animal body size. However, how animals actually perceive and make adjustments to their load-bearing musculoskeletal elements that accommodate variation in their body weight is poorly understood. We developed an experimental model system that can be used to start addressing these open questions, and uses hypergravity centrifugation to experimentally manipulate the loads experienced by Drosophila melanogaster. We examined effects of this manipulation on leg muscle alternative splicing of the sarcomere gene troponin T (Dmel \up; Fbgn0004169, herein referred to by its synonym TnT), a process that was previously demonstrated to precisely correlate with quantitative variation in body weight in Lepidoptera and rat. In a similar fashion, hypergravity centrifugation caused fast (i.e. within 24 h) changes to fly leg muscle TnT alternative splicing that correlated with body weight variation across eight D. melanogaster lines. Hypergravity treatment also appeared to enhance leg muscle function, as centrifuged flies showed an increased negative geotaxis response and jump ability. Although the identity and location of the sensors and effectors involved remains unknown, our results provide further support for the existence of an evolutionarily conserved mechanism that translates signals that encode body weight into appropriate skeletal muscle molecular and functional responses.",
author = "Schilder, {Rudolf J.} and Megan Raynor",
year = "2017",
month = "10",
day = "1",
doi = "10.1242/jeb.160523",
language = "English (US)",
volume = "220",
pages = "3508--3518",
journal = "Journal of Experimental Biology",
issn = "0022-0949",
publisher = "Company of Biologists Ltd",
number = "19",

}

TY - JOUR

T1 - Molecular plasticity and functional enhancements of leg muscles in response to hypergravity in the fruit fly Drosophila melanogaster

AU - Schilder, Rudolf J.

AU - Raynor, Megan

PY - 2017/10/1

Y1 - 2017/10/1

N2 - Studies of organismal and tissue biomechanics have clearly demonstrated that musculoskeletal design is strongly dependent on experienced loads, which can vary in the short term, as a result of growth during life history and during the evolution of animal body size. However, how animals actually perceive and make adjustments to their load-bearing musculoskeletal elements that accommodate variation in their body weight is poorly understood. We developed an experimental model system that can be used to start addressing these open questions, and uses hypergravity centrifugation to experimentally manipulate the loads experienced by Drosophila melanogaster. We examined effects of this manipulation on leg muscle alternative splicing of the sarcomere gene troponin T (Dmel \up; Fbgn0004169, herein referred to by its synonym TnT), a process that was previously demonstrated to precisely correlate with quantitative variation in body weight in Lepidoptera and rat. In a similar fashion, hypergravity centrifugation caused fast (i.e. within 24 h) changes to fly leg muscle TnT alternative splicing that correlated with body weight variation across eight D. melanogaster lines. Hypergravity treatment also appeared to enhance leg muscle function, as centrifuged flies showed an increased negative geotaxis response and jump ability. Although the identity and location of the sensors and effectors involved remains unknown, our results provide further support for the existence of an evolutionarily conserved mechanism that translates signals that encode body weight into appropriate skeletal muscle molecular and functional responses.

AB - Studies of organismal and tissue biomechanics have clearly demonstrated that musculoskeletal design is strongly dependent on experienced loads, which can vary in the short term, as a result of growth during life history and during the evolution of animal body size. However, how animals actually perceive and make adjustments to their load-bearing musculoskeletal elements that accommodate variation in their body weight is poorly understood. We developed an experimental model system that can be used to start addressing these open questions, and uses hypergravity centrifugation to experimentally manipulate the loads experienced by Drosophila melanogaster. We examined effects of this manipulation on leg muscle alternative splicing of the sarcomere gene troponin T (Dmel \up; Fbgn0004169, herein referred to by its synonym TnT), a process that was previously demonstrated to precisely correlate with quantitative variation in body weight in Lepidoptera and rat. In a similar fashion, hypergravity centrifugation caused fast (i.e. within 24 h) changes to fly leg muscle TnT alternative splicing that correlated with body weight variation across eight D. melanogaster lines. Hypergravity treatment also appeared to enhance leg muscle function, as centrifuged flies showed an increased negative geotaxis response and jump ability. Although the identity and location of the sensors and effectors involved remains unknown, our results provide further support for the existence of an evolutionarily conserved mechanism that translates signals that encode body weight into appropriate skeletal muscle molecular and functional responses.

UR - http://www.scopus.com/inward/record.url?scp=85030772352&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85030772352&partnerID=8YFLogxK

U2 - 10.1242/jeb.160523

DO - 10.1242/jeb.160523

M3 - Article

C2 - 28978639

AN - SCOPUS:85030772352

VL - 220

SP - 3508

EP - 3518

JO - Journal of Experimental Biology

JF - Journal of Experimental Biology

SN - 0022-0949

IS - 19

ER -